Виды программирования Языки программирования - это формальные языки специально соз-данные для общения человека с компьютером. Каждый язык програм-мирования, равно как и естественный» язык (русский, английский и т.д.), имеет алфавит, словарный запас, свою грамматику и синтаксис, а также семантику.

Алфавит - фиксированный для данного языка набор основных сим-волов, допустимых для составления текста программы на этом языке. Синтаксис - система правил, определяющих допустимые конструк-ции языка программирования из букв алфавита. Семантика - система правил однозначного толкования отдельных языковых конструкций, позволяющих воспроизвести процесс обработки данных. При описании языка и его применении используют понятия языка. Понятие подразумевает некоторую синтаксическую конструкцию и оп-ределяемые ею свойства программных объектов или процесса обработ-ки данных. Взаимодействие синтаксических и семантических правил определяют те или иные понятия языка, например, операторы, идентификаторы, переменные, функции «процедуры, модули и т.д. В отличие от естественных языков правила грамматики и семантики для языков программиро-вания, как и для всех формальных языков, должны быть явно, одно-значно и четко сформулированы. Языки программирования, имитирующие естественные языки, обла-дающие укрупненными командами, ориентированными на решение прикладных содержательных задач, называют языками «высокого уров-ня». В настоящее время насчитывается несколько сотен таких языков, а если считать и их диалекты, то это число возросло до нескольких тысяч. Языки программирования высокого уровня существенно отличаются от машинно-ориентированных (низкого уровня) языков. Во-первых, ма-шинная программа, в конечном счете, записывается с помощью лишь двух символов О и I. Во-вторых, каждая ЭВМ имеет ограниченный на-бор машинных операций, ориентированных на структуру процессора. Как правило, этот набор состоит из уравнительно небольшого числа простейших операций, типа: переслать число в ячейку; считать число из ячейки; увеличить содержимое ячейки на +1 и т.п. Команда на машин-ном языке содержит очень ограниченный объем информации, поэтому она обычно определяет простейший обмен содержимого ячеек памяти, элементарные арифметические и логические операции. Команда содер-жит код и адреса ячеек, с содержимым которой выполняется закодиро-ванное действие.

Языки программирования высокого уровня имеют следующие дос-тоинства:

Алфавит языка значительно шире машинного, что делает его гораздо боли выразительным и существенно повышает наглядность и понят-ность текста;

Набор операций, допустимых для использования, не зависит от на-бора машинных операций, а выбирается из соображений удобства фор-мулирования алгоритмов решения задач определенного класса;



Конструкции команд (операторов) отражают содержательные виды обработки данных и задаются в удобном для человека виде;

Используется аппарат переменных и действия с ними;

Поддерживается широкий набор типов данных. Таким образом, языки программирования высокого уровня являются машинно-независимыми и требуют использования соответствующих программ-переводчиков (трансляторов) для представления программы на языке машины, на которой она будет исполняться. Алгоритмическое программирование. На заре вычислительной техники компьютеры имели весьма небольшой по современным меркам объем оперативной памяти, который достигал десятков ки-лобайт. Обычный размер программ тех лет составлял несколько де-сятков строк кода. Такие программы разрабатывали методом алго-ритмического программирования: сначала готовили алгоритм в ви-де наглядной блок-схемы, а потом записывали его операторами того или иного языка программирования. Программа, составленная методом алгоритмического програм-мирования, начинается в одной точке, затем последовательно ис-полняет все инструкции и завершается в другой точке. Конечно, та-кие программы могут иметь и циклы, и ветвления, но общая логика работы программы все-таки последовательная: от начала к концу. Языки программирования 50-70 гг. XX в. были рассчитаны на алгоритмическое программирование. Основными языками тех лет были ФОРТРАН и АЛ ГОЛ-60. Язык ФОРТРАН имел упрощенный синтаксис, и его предпочитали инженеры, а язык АЛГОЛ-60 отли-чался строгими требованиями, и его предпочитали ученые, в основ-ном математики и физики. Несколько позже, в середине 60-х гг. был разработан язык алгоритмического программирования Бейсик, который и сегодня используют для начального знакомства с алгорит-мами и алгоритмическим программированием. Если цель обучения программированию состоит только в освоении приемов создания простейших алгоритмов, то язык Бейсик для этого вполне достато-чен. Процедурное программирование. Понятие подпрограммы было введено еще в ранних языках программирования. В алгоритмиче-ском программировании их использовали для того, чтобы выделить в отдельные блоки некоторые часто повторяющиеся операции. Обычно программа, записанная на алгоритмическом языке, содер-жит до десятка подпрограмм, которые делают ее более понятной. При желании без них можно обойтись, просто текст программы становится несколько более запутанным. В 70-х гг. XX в. размеры оперативной памяти компьютеров дос-тигли сотен килобайт. Появились дисковые накопители, с которыми программы могли обмениваться данными без участия человека. Это позволило увеличить размеры программ до тысяч операторов, и то-гда недостатки языков алгоритмического программирования стали сдерживать работу программистов. Если написать на алгоритмическом языке очень длинную про-грамму, то с ней трудно разобраться. Переходы из одних мест в другие кажутся запутанными, а большое количество переменных не укладывается в голове. Легко забыть, что хранится в той или иной переменной, и перепутать их имена. Выход из тупика был найден в более широком использовании подпрограмм. Программа, записанная на языке процедурного про-граммирования, выглядит как множество циклов, вложенных друг в друга. Она непрерывно «крутится» в этих циклах и время от време-ни вызывает исполнение функций и процедур. Даже если в про-грамме тысячи строк, разобраться с ней становится гораздо проще. Программист всегда может легко определить, внутри какого цикла в данный момент работает программа, и если там происходит какой-то сбой, то быстро выясняются имена подпрограмм, которые могут его вызвать. Алгоритмы для процедурного программирования тоже можно изображать графически, только называются они не блок-схемами, а структурными диаграммами. Вход в программу обычно один, но выходов из нее (в отличие от алгоритмического программирования) может быть много, и они не всегда размещаются в конце листинга. Для выхода из программы достаточно просто из любого места вы-звать завершающую процедуру. Первым языком процедурного программирования стал язык Пас-каль (Pascal). Это не значит, что на нем нельзя писать программы методом алгоритмического программирования, просто для проце-дурного программирования он подходил лучше, чем любой другой язык своего времени. Вскоре появился другой популярный язык процедурного программирования - СИ (С). Все первые языки, предназначенные для создания баз данных (Clipper, dBASE II, Fox-Pro, Paradox и мн. др.), тоже были рассчитаны на процедурное про-граммирование. Средствами процедурного программирования была создана ос-новная масса программ 70-80 гг. XX в. Большинство программ для MS-DOS (текстовых редакторов, бухгалтерских систем, баз данных и т. п.), используемых и по сей день, тоже были созданы этим прие-мом. Так же создавалось и большинство компьютерных игр для MS-DOS вплоть до начала 90-х гг. Усложнение подпрограмм. С развитием процедурного програм-мирования программисты поняли, какую огромную роль имеют подпрограммы. Неожиданно выяснилось, что программы самых разных классов - от служебных до игровых, могут быть очень по-хожи по структуре, а различаются лишь содержанием подпрограмм. Тогда программисты стали пытаться сделать подпрограммы такими, чтобы их можно было использовать многократно в разных проек-тах. Отдельные процедуры и функции стали приобретать такую мощь, что одним вызовом процедуры можно было выполнить сложнейшие действия, для которых раньше требовались недели программирования. Типизация подпрограмм. Чем мощнее становились процедуры и функции, тем выше был соблазн стандартизовать их так, чтобы без изменений использовать в разных программах. И тогда выяснилось, что одни подпрограммы подходят для этого хорошо, а другие - не очень. Нетрудно присоединить к любой программе процедуру или функцию, которая не обменивается с программой параметрами (ти-па RND), а просто выполняет какое-то действие, но чем больше па-раметров участвует в работе процедуры, тем труднее ее встроить в другую программу без специальной настройки. В итоге к середине 80-х гг. XX в. большинство компаний, вы-пускающих программы, занялись стандартизацией используемых процедур. Объектный подход. Чтобы подпрограммы стали стандартными и могли использоваться без переделок (но с поднастройками) повсе-местно, потребовалось изобрести для них классификацию и разра-ботать принципы их создания, документирования и применения. Эти принципы назвали объектно-ориентированным подходом. Достаточно сложные и мощные подпрограммы, поставлявшиеся вместе с языками программирования, стали считаться стандарт-ными объектами. Их можно было использовать в своих программах после несложной настройки параметров. Возьмем, к примеру, под-программу, выполняющую поиск слов в тексте. Ее можно исполь-зовать в разных программах, причем по-разному. При вызове с од-ними параметрами она способна искать заданные слова по содер-жащимся в них символам, при вызове с другими параметрами - по использованному шрифту, а при вызове с третьим набором пара-метров она не только найдет слова с ошибками, но и исправит их. Объекты стали считаться новыми, особыми типами данных, в которых сочетаются программный код и сами данные. Свойства объектов. С понятием объекта неразрывно связано по-нятие его свойств. Все объекты имеют свойства и различимы по своим свойствам. В итоге использование в программах готовых объектов стало очень простым: вызвали объект, настроили его свойства - получили готовый программный код. Использование готовых объектов с настраиваемыми свойствами позволило созда-вать программы без программирования. Если раньше для рисования правильного треугольника на экране программист должен был писать одну процедуру, а для рисования квадрата - другую, то при объектно-ориентированном подходе он может вызвать стандартный объект Shape (Фигура) и настроить его свойство, отвечающее за количество вершин. Более того, он может еще настроить такие свойства, как толщина, цвет и вид линии (сплошная, пунктирная и т. п.). Настройка свойств объектов выпол-няется простой операцией присвоения значений. То есть для про-граммиста свойства объектов - это обычные, хорошо знакомые пе-ременные, которым можно присваивать значения. Итак, объекты в программировании - это аналог подпрограмм. Свойства объектов - это аналог переменных, используемых в подпрограммах, а аналогом рабочего кода стали методы объектов. Методы объектов - это стандартные процедуры, которые свя-заны со своими объектами. Разным типам объектов соответствуют разные свойства и разные методы. Например, объекты, относящиеся к типу «окно», можно открывать и закрывать - это два типичных метода для окон. Объекты, относящиеся к типу «фигура», можно закрашивать разными цветами -за это отвечает метод, называе-мый заливкой. А с объектом «целое число» связаны знакомые нам методы сложения, умножения, деления и вычитания. Классификация объектов. Если бы объект был просто совокупно-стью методов и свойств, то ничего нового он программистам бы не дал - это была бы самая обычная стандартная подпрограмма с па-раметрами. Раньше каждая компания накапливала библиотеки про-цедур для себя, теперь появилась возможность всемирной стандар-тизации. Теперь, когда компания Borland или Microsoft включает в свою систему программирования класс объектов Frame, то любой программист в мире знает, что при его вызове на экране получится окно. Он также знает, как вызвать метод его закрытия или откры-тия, и каким свойствам надо присвоить значения, чтобы окно полу-чилось нужного размера. То же относится к другим объектам: Shape (Фигура), Table (Таблица) и др. Если сравнить программирование со строительством дома, то во времена процедурного программирования каждая фирма сама лепи-ла и обжигала для себя кирпичи (подпрограммы) и сохраняла в тай-не приемы работы с ними. С введением объектно-ориентированного подхода все программисты получили одинаковые заготовки (объек-ты) для кирпичей, труб, плит и панелей. Для их использования надо знать методы и свойства, связанные с каждым типом.

Наследование свойств и методов. Возможность классификации и стандартизации - не единственное достоинство объектно-ориентированного программирования. Важную роль сыграла также возможность наследования свойств и методов. Если бы все про-граммисты составляли свои программы только из заранее заготов-ленных объектов (стандартных классов), то все программы были бы удивительно похожи. С одной стороны, это хорошо, а с другой - плохо. Для служебных программ, например приложений Windows, это хорошо, потому что упрощается их изучение и освоение. Но для развлекательных программ это плохо: им требуется разнообразие. Но программист не обязан пользоваться только готовыми клас-сами объектов. Он может создавать свои объекты - для этого ему достаточно запрограммировать связанные с ними методы и подго-товить свойства. Более того, программист не должен делать это «с нуля». Он может взять какой-то готовый класс объектов и на его основе создать свой. Большинство методов и свойств ему не при-дется создавать - они наследуются автоматически. Конструирование вместо программирования. Создать программу, рисующую на экране красивое окно, весьма непросто, а использо-вать готовый объект Frame и настроить его свойства, чтобы окно было таким, каким надо, может каждый начинающий программист. После настройки свойств объекта он получает готовый программ-ный код длиной в десятки килобайт, хотя на самом деле присвоил всего лишь несколько значений переменным, выражающим свойст-ва объекта. Так благодаря объектно-ориентированному подходу программи-рование стало превращаться в конструирование программ из гото-вых блоков. Единственное, что остается для ручного программиро-вания, - запись строк, в которых свойства объектов получают нужные значения. Иногда программисты сталкиваются с тем, что для своих задач не находят готовых объектов. В этом случае им приходится дейст-вительно серьезно заниматься программированием, чтобы создать методы и описать свойства нестандартных объектов. Впрочем, и эта задача значительно упрощается, если программист не изобретает новый объект «с нуля», а использует для его создания другой, ранее созданный объект. Таким образом, объектно-ориентированный подход позволил создавать новые программы путем перенастройки старых. Это позволило значительно поднять производительность труда про-граммистов и перейти во второй половине 90-х гг. к созданию про-грамм размером в миллионы строк кода. Наглядный пример - опе-рационная система Windows. Над первой версией (Windows 95) компания Microsoft работала много лет. Сегодня новые версии Win-dows выходят каждый год: 1998 Windows 98 1999 Windows 98 SE 2000 Windows 2000, Windows Me 2001 Windows XP (версии Ноте и Professional) 2002 Windows XP (Server и Advanced Server). Объектно-ориентированные языки программирования. Переход к объектно-ориентированному программированию в середине 80-х годов XX в. состоялся не сразу, а только после создания языков программирования нового поколения. Вместе с новой концепцией программирования были разработаны и новые компиляторы, и биб-лиотеки объектов. Одним из первых объектно-ориентированных языков стал язык СИ++ (C++). Язык Паскаль (Pascal) развился в язык Object Pascal. Появились и другие объектно-ориентированные языки программирования, например язык Java, разработанный кор-порацией Sun Microsystems, - ныне он широко используется при создании приложений, работающих в Интернете. Визуальное программирование В операционной системе Win-dows немало стандартных элементов управления, таких как окна, меню, списки, переключатели, флажки и пр. Стандартны приемы работы с мышью: наведение, щелчок, двойной щелчок и прочие. Эти элементы и приемы управления стали настолько стандартными, что их унаследовало и большинство программ, написанных для ра-боты с Windows. Стандартизация графических элементов управле-ния и приемов работы с ними с помощью мыши позволила вновь изменить стиль программирования и перейти к так называемому визуальному программированию.

Системы визуального программирования. Переход к визуальному программированию наметился еще во времена операционной среды Windows 3.1 (1992-1994), но подлинное развитие новый метод по-лучил только после 1995 г., когда стали появляться специальные программные комплексы, получившие название систем визуального программирования. По-английски они также называются RAD-системами (RAD - Rapid Application Development - среда быст-рой разработки приложений). Языку Object Pascal соответствует система Delphi, языку Бейсик (Basic) - система Visual Basic, языку СИ ++ (C++) - система C++ Builder, языку Java - система Java Builder. Принципы визуального программирования. До визуального про-граммирования программист использовал в работе печатные спра-вочники или программные справочные системы, в которых были описаны правила создания объектов из стандартных классов, при-ведены основные методы и свойства объектов и правила их исполь-зования и настройки. Визуальное программирование позволило во многих случаях отказаться от справочников и создавать объекты с помощью мыши, что и удобно, и наглядно. Общий принцип визу-ального программирования такой. 1. Стандартные классы объектов, например такие, как окна, кнопки, списки, поля, переключатели, флажки и мн. др., представлены в системе визуального программирования в ви-де значков на инструментальной панели. Эти значки называ-ются компонентами. То есть компоненты - это инструменты для создания объектов. 2. Для вставки объекта в свою программу программист выбира-ет нужный компонент, после чего с помощью мыши помеща-ет в заготовку окна (она называется формой) заготовку буду-щего элемента управления. 3. Поместив объект на форму, программист щелчком мыши вы-зывает окно свойств этого объекта и настраивает их. После настройки объект приобретает размеры, местоположение, имя, надпись и т. п. Свойства могут иметь внутренние свой-ства, например, надпись на кнопке может иметь заданный цвет, шрифт, размер и т. п.

4. Точно так же с помощью мыши программист может вызвать окно кода, связанного с объектом, и выполнить настройку ме-тодов объекта. Например, он может сделать так, чтобы при открытии окна раздавался звук, а перед его закрытием возникало предупреждающее сообщение. 5. После размещения всех необходимых элементов управления на форме, настройки их свойств и подключения необходимых методов программа готова. С помощью мыши выдается команда на ее трансляцию. Системы Delphi и C++ Builder выполняют компи-ляцию, а система Visual Basic - интерпретацию. Событийное программирование Существует три стиля управле-ния: командный, диалоговый и пакетный. Это относится не только к программированию, а вообще к любому управлению. Подобие диалоговой работы впервые возникло во второй половине 60-х гг., ко-гда в больших ЭВМ появились многозадачные операционные сис-темы, работавшие в режиме разделения времени. Компьютер одно-временно работал с десятками пользователей, мгновенно пере-ключаясь между ними и их задачами. Каждый пользователь пола-гал, что компьютер работает только с ним. Тогда впервые программисты стали общаться с ЭВМ напрямую. Их рабочие места осна-стили терминалами (монитор + клавиатура). Но диалог происходил не внутри программы, а на уровне операционной системы, то есть либо перед исполнением программы, либо после него. Получив ре-зультат расчета, программист мог повторить расчет с другими дан-ными или внести изменения в программу и вновь запустить ее ис-полнение. До середины 70-х гг. в языках программирования не бы-ло средств для организации диалога. Такие языки появились только после создания персональных компьютеров. Все диалоговые возможности компьютера основаны на том, что программа работает в некоем бесконечном цикле, в ходе которого бесконечно опрашивает внешние устройства управления (клавиату-ру, мышь, модем и др.), а после получения отклика входит в другой цикл и опять что-то опрашивает. Вплоть до конца 80-х гг. програм-мисты отводили сотни строк своих программ реализации этих цик-лов. В итоге прием стал настолько стандартным, что его передали операционной системе, и начиная с Windows 3.0 программист мог не опрашивать устройства управления, а ждать сигнала от Windows. Для операционной системы Windows нажатие клавиш на клавиату-ре, перемещение мыши и нажатие ее кнопок, открытие и закрытие окон, поступление сигналов от внутренних часов, модема, принтера и прочих периферийных устройств, называются событиями. С раз-ными объектами Windows связаны разные события. Например, для окна событиями являются его открытие и закрытие; для текстового поля - его изменение, а для командной кнопки - щелчок мышью, совершенный над ней. При получении от операционной системы сигнала о том, что произошло некое событие, связанное с объектом, автоматически запускается подпрограмма-метод, являющаяся обработчиком данного события. В ней программист может записать ал-горитм действий, которые он хочет выполнить при наступлении со-бытия. Выше мы говорили о том, что с объектами связаны две характеристики: свойства и методы. Теперь мы можем добавить третью - события, связанные с объектами. В качестве реакции на событие объект автоматически запускает подпрограмму-метод, пред-варительно подготовленную программистом, а она, в свою очередь, может вызвать изменение свойств данного объекта или иных объек-тов, а также вызвать другие события, связанные с другими объектами и т. д. Последовательность исполнения программы при ис-пользовании событийного механизма зависит от порядка, в котором наступают те или иные события, и от реакции программных объектов на эти события. Практически все прикладные программы Win-dows основаны на событийном механизме. Действие инструментов рисования в программе Paint зависит от того, на каком из них произошел щелчок (какой инструмент избрал пользователь) и как он управляет мышью в ходе рисования. Действие процедур формати-рования в программе WordPad также зависит от того, какие экран-ные элементы управления зафиксировали событие. Событийный механизм не является свойством тех или иных языков программи-рования - это свойство (и особенность) операционной системы компьютера. При объединении событийного механизма, предостав-ляемого операционной системой, и объектно-ориентированного подхода, предоставляемого языком программирования, образуется отличная возможность для простой реализации диалога с компьютером. Это сочетание и называют событийным программировани-ем.

Основные понятия

Алгоритм - это предписание (приказ или система приказов), определяющее процесс преобразования исходных данных в.искомый результат к обладающее следующими свойствами:

  • определенностью, т. е. точностью и понятностью для исполнителен; благодаря этому свойству процесс выполнения алгоритма носит механический характер;
  • результативностью, т. е. способностью приводить к получению искомого результата после конечного числа достаточно простых шагов;
  • массовостью, т. е. пригодностью для решения любой задачи из некоторого класса задач.

Из определения алгоритма видно, что процесс его выполнения должен быть дискретным, состоять из отдельных шагов, алгоритмических актов. Требование простоты этих шагов связано с тем, что, допуская неограниченную сложность шагов, мы лишим понятие алгоритма всякой определенности. Свой- ство алгоритма приводить к решению за конечное число шагов называется потенциальной осуществимостью.

Естественные языки малопригодны для того, чтобы на них формулировать определенные и точные предписания. Алгоритм, следовательно, должен быть предписанием на формальном языке.

Каждая ЭВМ разрабатывается для решения в основном задач некоторого класса. В связи с этим требуется, чтобы ЭВМ обеспечивала возможность выполнения в требуемых сочетаниях некоторого набора операций, принятых за элементарные.

Элементарными машинными операциями являются ввод информации в ячейку оперативной памяти из какого-либо другого запоминающего устройства, выдача информации из ячейки, а также любая операция, которая: реализована аппаратурно; имеет исходные данные, являющиеся результатами элементарных машинных операций и фиксированные в одной или нескольких ячейках; дает результат, фиксируемый в одной отдельной ячейке и доступный, но не обязательный для использования в качестве исходного данного какой- либо элементарной операции машины; не может рассматриваться как комплекс более простых машинных операции, удовлетворяющих трем предыдущим условиям.

Системой операций называется совокупность всех машинных операций, предусмотренных в ЭВМ.

Команда представляет собой элементарное предписание, предусматривающее выполнение некоторой группы операций.

Основными операциями ЭВМ являются арифметические, логические, переносы, переходы, когда машина осуществляет переход от выполнения одной команды к выполнению другой, выборка команд из оперативной памяти и останов машины («стоп»). Основными операциями над буквенной информацией являются: определение длины слова; перенос слова с одного места оперативной памяти в другое; выделение определенной части заданного слова; включение между словами пробелов; деление строки слов на более мелкие строки; сравнение двух слов. Обычно перечисленные операции называют редактированием.

Программирование

ЭВМ обычно применяют либо для решения отдельных задач (принадлежащих к некоторому классу), либо для решения комплекса взаимосвязанных задач различных классов.

При решении на ЭВМ некоторой задачи (класса задач) работа распадается на следующие этапы:

    математическую формулировку задачи;

    разработку методики ее решения;

    разработку алгоритма ее решения и запись ее на некотором языке программирования;

    программирование;

    отладку программы на машине;

    подготовку исходных данных, решение задачи на ЭВМ.

Описанный комплекс работ называют проблемным программированием.

При разработке системы программ для решения комплекса взаимосвязанных задач, при разработке каждой программы описанная последовательность работ сохраняется. Кроме того, появляется ряд дополнительных этапов работы, связанных с необходимостью обеспечить единство системы. Комплекс работ по созданию системы программ для решения взаимосвязанных задач называют системным программированием.

Математическая формулировка задачи. Эта работа заключается в определении состава и характера исходных данных для решения задачи, в определении исходных результатов, записи условия задачи с помощью математических обозначений. Математический аппарат, применяемый при математической формулировке задачи, зависит от того, к какому классу принадлежит задача.

Разработка методики решения задачи. Методика решения считается разработанной тогда, когда установлены зависимости всех искомых результатов от исходных и указаны такие методы получения искомых результатов, которые могут быть реализованы на ЭВМ. При обнаружении непригодности выбранных методов в процессе решения задачи на ЭВМ необходимо вернуться к этапу разработки методики.

Разработка алгоритма решения задачи. Алгоритм решения задачи разрабатывается на основе методики ее решения. Алгоритм разрабатывается на языке математических описаний, а затем записывается на алгоритмическом языке из числа так называемых языков программирования. Разработка алгоритма решения задачи должна осуществляться с учетом особенностей ЭВМ.

Применяя ЭВМ для решения задачи, необходимо учитывать следующие ее особенности:

  • большое, но ограниченное количество цифр в изображениях чисел;
  • большую скорость выполнения операций над числами, хранящимися в оперативной памяти;
  • сравнительно малую скорость ввода исходных данных и вывода результатов;
  • сравнительно малую скорость обмена числами между оперативной памятью и внешними запоминающими устройствами;
  • сравнительно небольшую емкость оперативной памяти при весьма большой емкости внешних запоминающих устройств;
  • возможность случайных сбоев машины и вытекающую отсюда необходимость контроля ее работы.

Программирование. Программирование заключается в записи разработанного алгоритма на языке программирования (например, на так называемом языке АССЕМБЛЕРА или на АЛГОЛе, ФОРТРАНе, КОБОЛе, ПЛ/I), выполняемой вручную, и последующей трансляции на машинный алгоритмический язык.

Трансляцией называется процесс равносильного преобразования алгоритма, заданного на языке программирования, в алгоритм на машинном языке. Этот процесс выполняется с помощью специальной программы, называемой транслятором.

Отладка программы на машине. Отладка программы на машине преследует цель устранить в программе неправильности и включает: контроль программы; поиск и определение содержания (диагностику) ошибок; исправление обнаруженных ошибок.

Подготовка исходных данных. Решение задачи на ЭВМ. Исходные данные задачи, подлежащие вводу в ЭВМ, должны быть предварительно перенесены с бланков или документов на перфоленты или перфокарты. Этот процесс производится на специальных перфорирующих устройствах, снабженных клавиатурой. В процессе перфорации возможны ошибки как в результате случайных сбоев перфорирующих устройств, так и в результате погрешностей в работе операторов-перфораторщиков. Все ошибки, внесенные в информацию, во время перфорации и ввода должны быть устранены.

Как правило, для ввода информации в вычислительную машину используются либо 80-колонные ПК, либо бумажная ПЛ. На больших машинах имеется и то и другое. Перфокарта содержит 12 строк, и, следовательно, в каждой колонке возможно 12 пробивок; в поперечном направлении перфоленты допускаются 5, 6, 7 и 8 позиции пробивки. Таким образом, теоретически возможно использование алфавита от 2 5 =32 до 2 12 =4096 символов, но на практике в колонке перфокарты редко встречается более 3 пробивок, так что, как правило, используемый алфавит содержит от 40 до 80 символов. Среди оборудования вычислительной машины имеется самостоятельное устройство воспроизведения на бумаге информации, содержащейся на перфокартах и перфоленте в виде, удобном для чтения ее человеком. В результате мы получаем то, что обычно называется листингом, или распечаткой.

После ввода в ЭВМ программ и исходных данных решение задачи производится автоматически.

Математическое обеспечение ЭВМ

Математическое обеспечение (МО) ЭВМ можно определить как некоторое собрание программ, каждая из которых может быть практически применена пользователем одна или в совокупности с некоторыми другими программами для решения задач, либо для выполнения некоторых работ, связанных с программированием, либо для создания определенного режима работы ЭВМ.

В систему МО вычислительных машин могут входить следующие группы программ:

    операционная система программ;

    система средств программирования;

    приложения к программам;

    система программ поддержания математического обеспечения;

    система испытательных программ, предназначенных для контроля исправности ЭВМ.

Операционная система содержит в себе программы, определяющие режим работы ЭВМ и расширяющие ее операционные возможности. В состав операционной системы входит ряд программ, из которых основными являются следующие:

диспетчер - программа, обеспечивающая определенный режим работы ЭВМ;

супервизор, или монитор,- программа, обеспечивающая работу, задаваемую машине человеком-оператором в рамках установленного для нее режима;

ряд служебных программ, таких, как программы ввода исходных данных, программы редактирования и выдачи результатов, загрузчик - программа для ввода в оперативную память так называемых рабочих программ, т. е. программ решения задач, библиотекарь - программа для ввода подпрограмм по выполнению макрооперацпй и самих подпрограмм макроопераций, программа общения операционной системы с человеком-оператором.

Для работы операционной системы большое значение имеют возможности, которыми обладают современные машины (и которых не было у машин первого поколения): наличие системы прерываний, защиты памяти, защиты команд и маскирования прерываний.

Сущность работы диспетчера заключается в том, что любое прерывание в работе машины он относит либо к числу тактических и в этом случае немедленно передает управление и информацию о прерывании супервизору, либо к числу стратегических. В последнем случае он сам разрешает прерывание. Текст, соответствующий этой реакции, назовем выводом.

Супервизор планирует по требованию человека-оператора порядок выполнения программ и распределяет между ними наличное оборудование ЭВМ, организует их очередь и поддерживает в этой очереди порядок. Основные задачи, стоящие перед супервизором,- это: управление ходом работы ЭВМ; поддерживание связи с человеком-оператором.

Существуют различные режимы функционирования ЭВМ, обеспечение которых является одним из основных назначений диспетчера.

Ряд режимов связан с решением задач, представленных в виде так называемого пакета работ. При этом весь пакет снабжается информацией о входящих в него задачах и их преимуществах друг перед другом (система приоритетов).

Выполнение пакета работ производится под управлением супервизора. При этом может осуществляться однопрограммная, двухпрограммная или многопрограммная работа машины. Эффективность ее использования в значительной мере зависит от того, каким образом объединены работы в пакет. Пакет считается составленным хорошо, если центральный процессор (арифметическое устройство и устройство управления) не простаивает. Описанные режимы называют пакетными режимами. Современные ЭВМ допускают при этом одновременное выполнение до 16 работ.

Режим с разделением времени характеризуется тем, что к ЭВМ одновременно подключено большое число дистанционных устройств ввода-вывода информации, называемых терминалами. Если при пакетной работе пользователи не допускаются к пульту управления, то при режиме с разделением времени каждый из них общается с машиной без участия оператора. Диспетчер обеспечивает последовательное предоставление небольших отрезков времени всем находящимся в очереди пользователям. В течение времени, измеряемого несколькими секундами, машина понемногу обслуживает каждого пользователя. Режим разделения времени удобен в тех случаях, когда выполнение машинных работ должно протекать в виде диалога между ЭВМ и пользователем. Эго имеет место при отладке программ на ЭВМ, при решении информационных задач типа вопрос-ответ.

Система средств программирования содержит ряд трансляторов-программ для перевода алгоритмов, заданных на различных входных языках программирования, на машинный язык. Обычно система средств программирования содержит трансляторы с алгоритмических языков трех уровней.

Процесс перевода алгоритма и процесс его выполнения машиной могут сочетаться одним из двух способов.

Первый способ, получивший название компиляции, заключается в том, что процесс выполнения алгоритма машиной осуществляется после того, как процесс его перевода полностью завершен. Название «компиляция» возникло в связи с тем, что первоначально имелся в виду процесс перевода, основанный на соединении в одно целое заранее заготовленных частей (подпрограмм), соответствующих определенным частям переводимого алгоритма. Впоследствии это название распространили и на случай «динамического» перевода, не связанного с использованием заранее заготовленных текстов.

Второй способ сочетания процесса перевода и процесса выполнения алгоритма получил название интерпретации. Этот способ заключается в том, что отдельные части алгоритма сразу после перевода выполняются, после чего та же процедура осуществляется над другими частями алгоритма и т. д.

Для компиляции характерно, что осуществляющая ее программа-компилятор во время выполнения алгоритма уже не нужна и не находится поэтому в оперативной памяти ЭВМ. Применение же метода интерпретации требует присутствия программы-интерпретатора в оперативной памяти ЭВМ во время решения задачи.

Каждый из методов имеет свои достоинства, однако метод интерпретации является более гибким. Кроме того, он упрощает задачу распределении памяти, хотя и требует большого дополнительного расхода памяти для хранения самой интерпретирующей программы.

Системы средств программирования новейших ЭВМ часто основываются на так называемом принципе модульности. Модулями называют «куски» алгоритмов, заданных на языке исполнительной системы или на входном языке программирования, для которых выполнены следующие условия:

«куски» алгоритмов, заданных на языке исполнительной системы, должны быть снабжены дополнительной информацией, достаточной для того, чтобы при соответствующей их переработке из них можно было собрать программу, заданную на языке исполнительной системы;

«куски» алгоритмов, заданных на входных языках программирования, должны быть снабжены дополнительной информацией, достаточной для того, чтобы при соответствующей переработке их можно было преобразовать в модули, заданные на алгоритмическом языке исполнительной системы.

Принцип модульности заключается в том, что программы на языке исполнительной системы собирают из модулей. Модули на языке исполнительной системы могут накапливаться в библиотеке. Модульный принцип позволяет при сборке программы использовать модули, составленные на различных алгоритмических языках. Возможность накапливать модули и затем их многократно применять позволяет экономить труд программистов.

Все программы математического обеспечения должны быть элементами некоторой библиотеки. Библиотекой стандартных программ называется коллекция заранее составленных программ, в которой каждая программа снабжена дополнительной, идентифицирующей ее информацией. Данные о всех программах должны быть сведены в общую таблицу, называемую каталогом. Каталог должен позволять находить подпрограмму по ее имени и по ее назначению.

В библиотеку собирают обычно специально составленные и специально оформленные программы.

Перечисленные средства программирования целесообразно применять для решения различных задач (проблем). При этом считается, что программы отдельных задач (проблем) могут быть и не очень «хорошие», зато суммарным расход средств на программирование и решение задачи на ЭВМ бывает обычно меньше, чем при составлении более «хороших» программ.

Математическое обеспечение АСУ

Математическое обеспечение (МО) АСУ - это система методов, приемов и средств, позволяющих эффективно разрабатывать программы решения на ЭВМ конкретных задач АСУ, управлять работой ЭВМ в процессе решения этих задач, контролировать правильность работы ЭВМ.

Основными положениями, которыми необходимо руководствоваться при создании МО АСУ, являются следующие:

  • совместимость и базирование разрабатываемого МО АСУ на имеющемся МО ЭВМ;
  • ориентированность выбираемых средств МО на задачи АСУ;
  • достаточное разнообразие средств автоматизации программирования;
  • возможность эффективного внесения изменений в рабочие программы;
  • возможность однозначного и исчерпывающего описания алгоритмов;
  • возможность оптимизации работы программ частного применения;
  • модульность построения программ.

МО АСУ служит для представления пользователю широкого спектра услуг по технологии программирования. Его можно разделить на две части: составление управляющих программ и составление обрабатывающих программ.

Управляющие программы осуществляют первоначальную загрузку оперативной памяти машин и управление работой АСУП, включая обработку прерываний, распределение работы каналов, загрузку программ из библиотеки в оперативную память. Управляющие программы обеспечивают многопрограммную работу, осуществляют связь с оператором.

Обрабатывающие программы включают в себя систему автоматизации программирования и обслуживающие программы.

Функции системы автоматизации программирования следующие: запись программ на входных языках программирования; трансляции программ на внутренний язык ЭВМ; объединение (сборка) нужных конфигураций (сегментов) из стандартных подпрограмм; отладка программ на уровне входных языков; корректировка программ на уровне входных языков.

Основными задачами обслуживающих программ являются следующие: запись программ в библиотеку; исключение программ из библиотеки; перезапись программ с одного магнитного носителя на другой, печать и вывод программ на перфоносители; вызов нужных программ в процессе работы в оперативную память и настройка ее по месту размещения.

Основными компонентами МО АСУ являются системная диспетчерская программа и библиотека стандартных подпрограмм и типовых программ, предназначенных для обработки производственно-экономической информации.

Системная диспетчерская программа обеспечивает функционирование АСУП в режиме, определенном производственно-хозяйственной или административной деятельностью.

Библиотека стандартных подпрограмм, имеющаяся в МО ЭВМ, является переходной ступенью к разработке системной библиотеки, ориентированной на процессы обработки информации в АСУ. Системная библиотека должна содержать:

программы ввода и преобразования в машинную форму документов и других письменных источников исходных данных;

программы для организации машинных массивов, характеризуемых как большими объемами, так и сложностью их структуры, для эффективного поиска и извлечения требуемых данных из массивов;

программы для преобразования данных в наиболее приемлемую для человека форму (в виде графиков, схем, изображений) и вывода их на внешние устройства.

Языки программирования

Языком программирования называются знаковые системы, применяемые для описания процессов решения задач на ЭВМ. По своему характеру языки программирования делятся на три группы:

  1. формальные алгоритмические языки;
  2. формальные неалгоритмические языки программирования;
  3. не вполне формализованные знаковые системы, применяемые при программировании.

Формальные языки программирования. К этой группе языков относятся: алгоритмические языки машин и операционных систем; машинно-ориентированные алгоритмические языки; проблемно-ориентированные алгоритмические языки; универсальные машинно-независимые алгоритмические языки.

Языками операционных систем называются алгоритмические языки, воспринимаемые комплексами, образованными из ЭВМ и разработанной для них программы-диспетчера (иногда называемой также супервизором).

Составление программ непосредственно вручную на языке машины или операционной системы в настоящее время не применяется, так как требует от программиста запоминания большого количества деталей, без которых невозможно строить программу из команд.

Машинно-ориентированные алгоритмические языки содержат выразительные средства, позволяющие в записи алгоритма указать, с помощью каких технических средств должны выполняться те или иные его части и каким образом при этом должны быть использованы запоминающие устройства. К числу машинно-ориентированных языков программирования относятся автокоды и некоторые языки, приближающиеся по своим возможностям к универсальным алгоритмическим языкам, например AЛMO.

Проблемно-ориентированные алгоритмические языки это такие языки, которые специально разработаны для описания процессов решения задач некоторого узкого класса, например задач линейной алгебры, статистики, задач обработки данных и т. п. В частности, к проблемно-ориентированным языкам относится КОБОЛ.

Универсальные машинно-независимые алгоритмические языки пригодны для создания алгоритмов решения задач весьма широких классов. К числу этих языков относятся уже упомянутые АЛГОЛ, ФОРТРАН, ПЛ/1.

Из числа универсальных машинно-независимых алгоритмических языков исключение составляет ЯЛС. Назначение этого языка не сводится к тому, чтобы быть языком программирования. ЯЛС используется как первый этап описания алгоритмов при программировании на машинном языке или на языке АССЕМБЛЕРА (операторный метод программирования; записанный на ЯЛС алгоритм вручную переводится на язык машины или язык АССЕМБЛЕРА).

В таблице ниже приводятся сравнительные данные формальных языков программирования.

Не вполне формализованные знаковые системы. Эти языки обычно используются при программировании вручную или на предварительном, выполняемом вручную этапе автоматизированного программирования. Их примером является блок-схема программы. Блок-схема программы представляет собой укрупненное описание программы, при котором отдельные ее части изображаются в виде «блоков» (прямоугольников, ромбов, кружков и т. п.), внутри которых на естественном языке (например, на русском) излагается содержание этих частей. Связь между блоками (частями программы) изображается с помощью линий, обозначающих передачу управления. Линии могут быть снабжены надписями, указывающими условия, при которых происходит передача управления. Блок-схемы аналогичны алгоритмам, записанным на ЯЛС с помощью обобщенных операторов, но отличаются от них тем, что значение блоков изложено на естественном, неформальном языке, тогда как в ЯЛС обобщенные операторы снабжены расшифровкой на точном формальном языке.

В настоящее время известно более 2000 различных алгоритмических языков и более 700 областей их применения для решения соответствующих задач на ЭВМ.

Различают языки программирования следующих уровней:

    язык нулевого или низшего уровня - машинный код;

    язык первого уровня - мнемокод, или язык символического кодирования;

    язык второго уровня - автокод (макрокод);

    языки третьего уровня (высшего)-проблемно-ориентированные языки.

В качестве входных языков в зависимости от вида задач АСУП целесообразно применять проблемно-ориентированные языки различного типа

Сравнительные данные формальных алгоритмических языков программирования

Класс алгоритмических языков программирования

Учет особенностей ЭВМ

Характеристика класса задач

Способ программирования

Условная оценка качества программ

Машинные языки

Машинно-ориентированные языки

Частичный

Определяется особенностями ЭВМ

Автоматизированный

Удовлетворительная

Проблемно-ориентированные языки

Незначительный

Автоматизированный

Удовлетворительная

Универсальные машиннонезависимые языки

Отсутствует или весьма незначительный

Весьма обширный

Автоматизированный

Невысокая

(например, для анализа - АЛГОЛ, ФОРТРАН и др., для экономических задач- АЛГЭК и др., для информационных задач -КОБОЛ, СИНТОЛ и др.).

Рассмотрим некоторые из алгоритмических языков программирования.

АЛГОЛ-60. Название языка происходит от английских слов Algorithmic Language. Он был разработан группой ученых различных стран в 1960 г. и получил повсеместное распространение. Причины успеха заключаются в его близости к обычному математическому языку, в удобстве описания широкого класса задач, универсальности и полной независимости от конкретной ЭВМ, строгой формализации языка от алфавита до самых сложных конструкций.

АЛГОЛ-60 не только универсальный язык программирования, но и международный язык описания алгоритмов.

Основой записи алгоритмов на языке АЛГОЛ-60 является последовательность операторов, разделенных символом «;». К этой последовательности операторов, являющихся единичными действиями в языке, присоединяется последовательность описаний, дающих транслятору информацию о необходимых свойствах, используемых в операторах. Описания, например, дают информацию о классах чисел, используемых в качестве значений переменных, о размерности массивов чисел и т. д. Такое объединение описаний и операторов в этом языке называется блоком.

Программой в языке АЛГОЛ-60 называется блок, или составной оператор, который не содержит внутри другого оператора и не использует другой оператор, не содержащийся в нем.

Вычислительные центры, в которых ведется программирование на АЛГОЛе, должны накапливать опыт не в виде полных АЛГОЛ-программ, а в виде описаний процедур. Это связано с тем, что готовые АЛГОЛ-программы включить в новые программы практически невозможно, тогда как описания процедур для этого специально предназначены.

В СССР АЛГОЛ-60 получил распространение в виде некоторых его вариантов.

ФОРТРАН. Слово ФОРТРАН образовано из двух английских слов (Formula Translator). Одной из важнейших особенностей языка ФОРТРАН является то, что он относительно свободен от специфики конкретной вычислительной машины. ФОРТРАН является машиннонезависимым языком программирования.

Накоплены обширнейшие математические программные библиотеки на этом языке, включающие как стандартные (часто используемые) программы, так и множество специальных программ, применяемых для решения специфических задач.

Повсеместное внедрение ФОРТРАНа в практику программирования происходит благодаря его качествам, из которых следует отметить, во-первых, его простоту по сравнению с другими алгоритмическими языками (например, АЛГОЛом); во-вторых, благодаря отсутствию слишком сложных конструкций оттранслированные программы получаются более эффективными по сравнению с программами, составленными на других языках; в то же время ФОРТРАН пригоден для программирования большинства вычислительных алгоритмов;

в-третьих, в ФОРТРАНе имеются очень мощные средства для связи человека с машиной: выдаваемая ЭВМ информация представляется в виде, привычном для ученых и инженеров. И наконец, в-четвертых, ФОРТРАН хорошо приспособлен для эффективного использования внешних устройств ЭВМ.

Алгоритм решения задачи, записанный с помощью ФОРТРАНа, состоит из последовательности операторов. Эти операторы могут принадлежать к нескольким различным типам. Вместе взятые операторы, определяющие алгоритм решения задачи, составляют исходную программу. После того как исходная программа написана и отперфорирована на перфокартах, она преобразуется с помощью транслятора ФОРТРАНа в рабочую программу.

Первый оператор - оператор-заголовок, имеющий вид || PROGRAMa ||, где а -имя программы, а последний - оператор конца (оператор || END ||) и совокупность подпрограмм. Основная программа и каждая подпрограмма локализуют в себе метки операторов, а также имена переменных, массивов и других величин, позволяя тем самым использовать в разных подпрограммах и в основной программе одни и те же метки и идентификаторы. Связь между основной программой и подпрограммами осуществляется с помощью соответствующих операторов обращения.

При составлении программ на ФОРТРАНе рекомендуется придерживаться следующего порядка следования операторов: 1) оператор-заголовок основной программы (подпрограммы); 2) оператор описания файлов; 3) неявный оператор задания типа; 4) явный оператор задания типа, оператор задания размеров, оператор задания общих областей; 5) оператор задания эквивалентности; 6) оператор-функция, оператор-процедура; 7) оператор задания формата, выполняемые операторы (безусловные, условные, ввода, вывода); 8) оператор конца.

КОБОЛ. Название языка происходит от английских слов Common Business Orientated Language. КОБОЛ - проблемно-ориентированный алгоритмический язык, предназначенный для описания процессов решения задач и обработки данных. В настоящее время КОБОЛ является единственным широко распространенным языком высокого уровня для программирования экономических задач. Его широкая популярность объясняется тем, что КОБОЛ достаточно близок к естественному языку, на котором обычно формулируются и решаются экономические задачи.

Отличительные особенности языка КОБОЛ состоят в следующем:

язык в известном смысле является подмножеством английского языка; написанный на КОБОЛе текст можно понимать без предварительной подготовки;

на языке хорошо описываются данные со структурой, типичной для деловых бумаг; эти данные могут относиться к личным делам, товарам, финансам (допускаются и комбинированные данные);

в языке делается попытка решения проблемы полной совместимости, т. е. независимости от специфики конкретных вычислительных машин.

Программа на языке КОБОЛ состоит из четырех частей, называемых разделами. Эти разделы имеют следующие названия: раздел идентификации, раздел оборудования, раздел данных и раздел процедур. В разделе процедур содержится собственно программа, но она не имеет смысла (или в лучшем случае не полностью определена), если неизвестна структура подлежащих обработке данных, определяемая в третьем разделе. Раздел оборудования делится в свою очередь на секцию конфигураций и секцию ввода-вывода, а раздел данных - на секцию массивов, секцию рабочей памяти и секцию констант. В начале раздела (секции) находится название раздела (секции), за которым следует точка; название с точкой занимает отдельную строку. Содержимое раздела или секции состоит из предложений, сгруппированных в именованные параграфы.

В КОБОЛе значительно облегчено внесение в программу мелких изменений, необходимых при обработке коммерческой информации.

В КОБОЛе основной единицей ввода-вывода является файл данных. Каждый файл состоит из записей. Один и тот же файл часто используется в различных программах в зависимости от характера решаемых задач. Описание файлов является очень строгим и не допускает изменений.

Разработчики учли возможность использования для трансляции программ одной машины, а для решения задачи по составленной программе - другой машины. Кроме того, одна и та же КОБОЛ-программа допускает трансляцию на языки различных ЭВМ, имеющих различные комплекты оборудования.

СОЛ. Цифровое моделирование как эффективный метод исследования завоевывает все большую популярность среди специалистов, занимающихся анализом и проектированием сложных систем.

Очень часто специалист по системам испытывает трудности в составлении программы, моделирующей работу исследуемой им системы. Причиной этого может быть чрезвычайная сложность систем, которые практически невозможно описать математически. Задачами такого типа изобилует, в частности, практика создания контрольно-измерительных и управляющих систем. Для облегчения составления программ в настоящее время применяются языки автоматического программирования (специализированные моделирующие языки), которые позволяют при наименьших затратах времени на подготовку и реализацию задач на ЭВМ строить и исследовать программы, моделирующие работу исследуемой системы.

При этом элементы специализированного языка являются, как правило, довольно универсальными и могут быть. применены к широкому классу моделируемых явлений. Кроме того, специализированные моделирующие языки по сравнению с универсальными существенно упрощают программирование вычислительных и логических операций, характеризующих моделируемую систему. Вместе с тем упрощается и связь между постановщиком задачи и программистом. Это достигается благодаря следующим чертам специализированных моделирующих языков:

  • возможности фиксировать структуру распределения памяти машины между переменными и параметрами. Это распределение является более детализированным и совершенным, чем то, которое достигается при использовании большинства универсальных языков;
  • наличию набора инструкций, упрощающих смену состояний моделируемой системы. В большинстве случаев это осуществляется стандартной управляющей или временной подпрограммой, контролирующей последовательность реализации подпрограмм;
  • наличию набора инструкций, определяющих необходимость реализации той или иной подпрограммы в определенное время;
  • наличию команд для выполнения стандартных или часто встречающихся операций, связанных со случайными числами и вероятностными распределениями;
  • наличию команд, упрощающих получение и регистрацию статистических показателей во время прогона моделирующей программы.

Рассмотрим некоторые специализированные алгоритмические языки моделирования.

Универсальный моделирующий язык GPSS наиболее широко используется, отличается простотой и наглядностью. Он не требует знания программирования и машинных операций. Моделирующая программа представляется в виде блок-диаграммы, что особенно привлекательно для непрограммистов.

Алгоритмический язык SIMSCRIPT принято считать наиболее мощным моделирующим языком в настоящее время. Благодаря ряду своих уникальных черт он применим для самого широкого класса задач. Однако этот язык сравнительно сложен, диагностические средства для отладки программ ограничены. Кроме того, потенциальный потребитель этого языка должен знать ФОРТРАН, иметь опыт программирования.

Внимание специалистов, связанных с решением проблем моделирования, привлекают специализированные языки, разработанные для этих целей на базе АЛГОЛа. Среди таких языков автоматического программирования наиболее совершенными являютсяSIMULA и SOL (СОЛ).

Примером одного из наиболее удачных специализированных алгоритмических языков, предназначенных для моделирования дискретно изменяющихся систем, является язык СОЛ - Simulation Orientated Language.

Язык СОЛ построен на базе универсального языка программирования АЛГОЛ, имеет такую же структуру и использует основные его элементы. Для описания широкого класса процессов с дискретными событиями СОЛ представляет универсальную систему понятий, и потому он во многих отношениях очень похож на проблемно-ориентированные языки автоматического программирования, такие, как АЛГОЛ или ФОРТРАН. Однако языку СОЛ присущи основные черты, отличающие его от этих языков: СОЛ обеспечивает механизм моделирования асинхронных параллельных процессов, удобные обозначения для случайных элементов внутри арифметических выражении, автоматические средства сбора статистических данных о компонентах моделируемой системы. С другой стороны, многие черты проблемно-ориентированных универсальных языков не используются в СОЛе не потому, что они несовместимы с ним, а скорее потому, что они вносят большие усложнения в его схему, не расширяя его возможности. Принципы, положенные в основу построения языка и написания моделирующих программ на нем, позволяют строить модели сложных систем в удобной для чтения форме.

ПЛ/ I . Название языка происходит от английских слов Programming Language/One.

Язык ПЛ/I появился после создания целого ряда весьма совершенных языков, и, конечно, эти языки-предшественники оказали существенное влияние на его структуру. Так, в нем сохранены от АЛГОЛа блочная структура программы, возможность динамического распределения памяти, имеется аппарат вызова процедур, способ задания форматов, используемый в ФОРТРАНе, и т. д. Но много и новых черт. Язык удобен для моделирования, решения логических задач, исследования логических схем, решения задач в реальном масштабе времени, разработки систем математического обеспечения. Возможно использование разного типа данных (двоичных, десятичных, символьных, комплексных чисел, матриц и т. д.), однако весьма сложно организовывать эти данные в массивы, таблицы, тексты, анкеты, картотеки и т. и. Имеется большой набор стандартных функций и процедур. В языке ПЛ/I разработана удачная система операции, управляющих всеми процессами ввода, вывода и обмена информацией между основными и запоминающими устройствами. Все эти особенности производят впечатление сильной перегруженности языка. Следует иметь в виду и недостатки: описание языка неудовлетворительно, оно не формализовано.

ПЛ/I - многоцелевой язык программирования, предназначенный не только для экономического и научно-технического программирования, но также для программирования работ в реальном масштабе времени и для создания систем программирования.

Одной из основных целевых установок при разработке языка было достижение модульности, т. е. возможности использовать в главной программе уже транслированные программы в качестве отдельных модулей без повторной трансляции. Была учтена необходимость обеспечения как можно большей простоты и удобства написания программ. При этом необходимость составления общих и подробных логических схем программ все еще сохраняется, но при соответствующем опыте программирования на языке ПЛ/Iможно избежать большой и утомительной работы, связанной с написанием программы на машинном языке.

В языке ПЛ/I каждому описателю переменной, каждой уточняющей конструкции-дополнению и каждой спецификации придана «интерпретация (принцип) умолчания». Это означает, что всюду, где язык предоставляет несколько возможностей, а программист не указал никакой, компилятор применяет «интерпретацию умолчания», т. е. подразумевается некоторая из возможностей, предусмотренная в языке на этот случай. В качестве таких подразумеваемых для каждой конструкции возможностей в языке выбраны те, которые, вероятнее всего, потребуются программисту.

Программы на языке ПЛ/I пишутся в свободной форме; программист может сам разработать нужные ему формы записи программ. При этом обеспечен доступ ко всем средствам системы ЭВМ.

Операторы программы, записанной на языке ПЛ/I, объединяются в «блоки». Блоки выполняют важные функции: они определяют область действия переменных и других имен, так что одно и то же имя в разных блоках может использоваться для различных целей; они позволяют отводить ячейки памяти под переменные только на время выполнения данного блока и освобождать их для использования в других целях по прекращении работы блока.

РПГ. Язык РПГ предназначен для автоматизации программирования задач но обработке экономической информации. Содержание этих задач в основном исчерпывается следующими процессами: ведением файлов (т. е. организация, хранение, корректировка и обновление), сортировкой файлов, составлением и печатью различных бухгалтерских документов, таких, как перечни, ведомости, таблицы, сводки, отчеты и др. Как правило, расчеты занимают небольшую часть общего объема решения задач. При решении таких задач удобно использовать РПГ особенно на этапе составления и выдачи отчетов. В этом случае предполагается, что входные файлы, которые используются для подготовки отчетов, созданы и отсортированы при помощи других средств.

РПГ позволяет производить некоторые вычисления (обычно несложные и стандартные) над входными данными, сформировать отчет и выдать его на печать. Входные данные могут быть введены с устройств ввода карт, магнитных лент или устройств памяти прямого доступа. Кроме создания отчета РПГ позволяет корректировать и обновлять входные файлы, а также создавать новые файлы. В РПГ есть средства, позволяющие проводить операции с таблицами (например, поиск требуемого элемента таблицы и вывод таблицы), а также средства для организации связи программы РПГ с программами, написанными на других языках и используемыми для решения этой же задачи.

Особенностью языка является то, что программист не должен расписывать последовательность операций для решения задачи (алгоритм задачи), а должен только описать на специальных бланках входные данные, используемые для создания отчета, вычисления, производимые над этими данными, и формат отчета.

На основании этой информации транслятор РПГ формирует рабочую программу, и затем созданная программа обрабатывает входные файлы и печатает требуемый отчет.

Подготовка отчета с помощью РПГ состоит из следующих основных этапов: определения данных задачи и способа их обработки; составления исходной программы; перфорации исходной программы; получения рабочей программы; выполнения рабочей программы.

Перед написанием программы поставленной задачи требуется выполнить некоторый его анализ. Нужно определить входные данные, формат и тип записей входных данных, используемые поля записей и их положение, способ обработки данных, количество и вид итогов, которые должны быть подсчитаны, формат печатного отчета и других выходных данных.

После того как установлены входные и выходные данные задачи и способ их обработки, нужно описать эти данные на соответствующих бланках РПГ. Существует несколько типов бланков РПГ, каждый из которых предназначен Для записи определенной информации. На бланках описания входных данных перечисляются все входные файлы, описывается структура и отличительные признаки всех типов записей каждого из файлов и расположение используемых полей в записях. На бланке вычислений указывается, какую обработку входных данных нужно выполнить. На бланке описания выходных данных описывается формат требуемого отчета и других выходных файлов. На бланке описания файлов и бланке дополнительной информации указываются характеристики используемых в программе файлов (входных, выходных, табличных и т. д.). Исходной программой называется информация, указанная на бланках РПГ для решения данной задачи.

После написания программы на соответствующих бланках текст программы перфорируется на картах.

Для получения рабочей программы сначала нужно выполнить трансляцию исходной программы. Для этого к картам исходной программы добавляются некоторые управляющие карты, такие, как управляющая карта транслятора РГ1Г и карты управляющих операторов - УПРАВЛЕНИЯ ЗАДАНИЯМИ, необходимые для работы транслятора РПГ. После трансляции полученный модуль может быть отредактирован с помощью РЕДАКТОРА. В результате редактирования получается готовая для выполнения программа (загрузочный модуль), которая называется рабочей программой. Компиляция и редактирование необходимы для получения желаемого отчета.

Рабочая программа может быть выполнена непосредственно после трансляции и редактирования либо в любой другой момент времени. Рабочая программа считывает подготовительные входные файлы, обрабатывает их и в результате получает отчет и другие выходные файлы.

АЛГАМС. Алгоритмический язык АЛГАМС ориентирован на машины средней мощности; основой его стало подмножество языка АЛГОЛ-60.

Важной проблемой, которая решена в АЛГАМСе, является введение процедур ввода-вывода. В АЛГАМСе расширен набор стандартных функций, имеется также возможность использования библиотечных подпрограмм. В АЛГАМС включены средства, позволяющие дать указание о возможной сегментации программы, так называемые идентификаторы части, а также средства, дающие возможность эффективно использовать буферную память ЭВМ путем описания некоторых из массивов особыми идентификаторами.

Оператор ввода состоит из идентификатора INPUT и следующего за ним списка фактических параметров, заключенного в круглые скобки. Первый параметр определяет номер канала, через который вводят данные, остальными фактическими параметрами являются простые переменные, идентификаторы массивов или переменные с индексами.

При вводе текста последовательным элементам массива начиная с указанного объекта ввода присваиваются целые значения, соответствующие последовательным символам вводимой строки в смысле процедуры=ТЕХТ. Процедура = ТЕХТ определяется следующим образом: <оператор текст> ::=ТЕХТ (<строка>, <переменная с индексами>).

Идентификатором процедуры ввода является слово OUTPUT. Оператор имеет четыре вида: оператор вывода чисел, оператор логических значений, оператор вывода текста и оператор размещения. Оператор вывода состоит из идентификатора OUTPUT и следующего за ним списка фактических параметров, заключенного в круглые скобки. Первый фактический параметр процедуры определяет номер канала вывода, второй параметр определяет формат выводимых данных, а все остальные - объекты вывода. Имеются средства редактирования при выводе информации на печать.

БЭЙСИ К. Название языка происходит от английских слов Beginners all Purpose Symbolic Instructioncode. Он получил широкую популярность благодаря своей простоте, легкости в изучении и большим возможностям для решения самых различных задач. Во многих мини-ЭВМ этот язык принят в качестве основного разговорного языка. Язык БЭЙСИК представляет собой язык программирования. Он удобен для решения научно-технических задач небольшого объема как по количеству выполняемых операций, так и по количеству исходных и результирующих данных. Важнейшей особенностью языка является то, что он приспособлен для шаговой реализации. Это означает, что после каждого изменения исходного текста программы на языке БЭЙСИК можно перетранслировать не всю-программу, а только те ее операторы, которые были изменены. Возможность шаговой реализации языка БЭЙСИК позволяет сократить затраты машинного времени на перетрансляцию. Это в свою очередь позволяет ускорить цикл отладки настолько, что становится целесообразной отладка БЭЙСИК-программ в режиме диалога.

Помимо возможности накапливать большие программы, состоящие из перенумерованных операторов языка БЭЙСИК, предусмотрены так называемые прямые команды, т. е. такие, которые исполняются тотчас же после ввода их с пульта программиста (с телетайпа). В режиме прямых команд могут использоваться не только административные директивы типа RUN-запуск исполнения, LIST - распечатка текста, SAVE - сохранить текст программы в библиотеке, BYE - конец сеанса работы; любой оператор языка БЭЙСИК, введенный без порядкового номера, исполняется в режиме прямой команды. Это позволяет, в частности, распечатывать и изменять значения переменных в любой момент выполнения программы.

Служебное слово Выполняемое действие

PRINT Отпечатать текст сообщения, заключенный в кавычки, или значение арифметического выражения (предварительно вычислив его), или значения переменных

INPUT Ввести числа с пульта программиста и заслать их в указанные переменные

LET Присвоить переменной значение выражения

GO ТО Перейти к выполнению оператора с заданным номером

IF Если заданное условие выполнено, то необходимо выполнить действие, указанное в данном операторе, иначе - перейти к выполнению следующего оператора

DATA Данные; этот оператор не выполняется. Он описывает блок отладочных данных (чисел). Совокупность блоков отладочных данных образует массив отладочных данных

END Конец программы

Таким образом, шаговая схема компиляции в сочетании с режимом прямых команд позволяет эффективно отлаживать БЭЙСИК-программы в режиме диалога.

Программа на языке БЭЙСИК состоит из операторов, каждый из которых начинается со служебного слова. Служебное слово определяет тип оператора и характер действий, осуществляемых при его выполнении.

При решении многих задач необходимо представление данных в виде таблиц. Используя возможности некоторых операторов языка БЭЙСИК, можно формировать таблицы различных форматов.

Язык программирования - искусственный (формальный) язык, предназначенный для записи программ для исполнителя (например, компьютера или станка с числовым управлением). Язык программирования задается своим описанием. Описание языка программирования - это документ, специфицирующий возможности алгоритмического языка. Обычно описание содержит:

· алфавит допустимых символов и служебных (ключевых) слов;

· синтаксические правила построения из алфавита допустимых конструкций языка;

· семантику, объясняющую смысл и назначение конструкций языка.

Языки программирования служат для представления решения задач в такой форме, чтобы они могли быть выполнены на ЭВМ.

Машинный язык, который состоит из команд процессора ЭВМ, также является языком программирования. Но алгоритмы, записанные на машинном языке, трудны для чтения даже программисту-разработчику, кроме того, работа с таким языком требует знания архитектуры конкретного компьютера, поэтому в программировании, как правило, используют языки более высокого уровня, чем машинные языки. Язык высокого уровня - это язык программирования, понятия и структура которого удобны для восприятия человеком и не зависят от конкретного компьютера, на котором будет выполняться программа.

Для того чтобы программу, записанную на языке программирования высокого уровня, можно было выполнить на компьютере, ее надо перевести на машинный язык. Программное средство, выполняющее эту функцию, называется транслятором.

Транслятор - это программа, которая считывает текст программы, написанной на одном языке, и транслирует (переводит) его в эквивалентный текст на другом языке (обычно на машинном языке). Трансляторы бывают двух основных видов: компиляторы и интерпретаторы .

Компилятор преобразует текст исходной программы в набор инструкций для данного типа процессора (машинный код) и далее записывает его в исполняемый файл (exe-файл), который может быть запущен на выполнение как отдельная программа. Другими словами, компилятор переводит программу с языка высокого уровня на низкоуровневый язык.

Интерпретатор в результате трансляции выполняет операции, указанные в исходной программе. При этом программа остается на исходном языке и не может быть запущена на выполнение без интерпретатора.

Разделение на компилируемые и интерпретируемые языки является несколько условным. Так, для любого традиционно компилируемого языка, как, например, Pascal, можно написать интерпретатор, а для любого интерпретируемого языка можно создать компилятор, - например, язык Бейсик, изначально интерпретируемый, может компилироваться без каких бы то ни было ограничений.

Некоторые языки, например Java и C#, находятся между компилируемыми и интерпретируемыми. А именно, программа компилируется не в машинный язык, а в машинно-независимый код низкого уровня, байт-код. Далее байт-код выполняется виртуальной машиной. Для выполнения байт-кода обычно используется интерпретация. Подобный подход в некотором смысле позволяет использовать плюсы как интерпретаторов, так и компиляторов.

Со времени создания первых программируемых машин человечество придумало уже более двух с половиной тысяч языков программирования. Количество языков программирования постоянно растет, хотя этот процесс явно замедлился. Некоторыми языками пользуется только небольшое число программистов, другие становятся известны миллионам людей. Часть из них узкоспециализированны (предназначены для решения определенного класса задач), а часть - универсальны. Профессиональные программисты иногда применяют в своей работе более десятка разных языков программирования.

Классификацию языков программирования можно вести по нескольким критериям: машинно-ориентированные (ассемблеры) и машинно-независимые, специализированные и универсальные.

К специализированным языкам можно отнести язык АРТ (A utomatically P rogrammed T ools ) - первый специализированный язык программирования для станков с числовым управлением. Язык был разработан группой американских специалистов в 1956–1959 гг. под руководством математика Дугласа Т. Росса. Язык СOBOL (Co mmon B usiness–O riented L anguage ), созданный в США под руководством Грейс Мюррей Хоппер в 1959 г., ориентирован на обработку экономической информации. Математик Грейс Мюррей Хоппер возглавила проект по разработке СOBOL в чине капитана второго ранга, впоследствии она стана контр-адмиралом. Г.М. Хоппер называют “мамой и бабушкой” СOBOLа.


(Grace Murray Hopper)

К специализированным языкам можно отнести и современные языки web-программирования Perl и PHP. Языки Рапира, Е-язык (Россия), SMR (Великобритания), LOGO (США) можно отнести к языкам, предназначенным для обучения программированию.

Самыми распространенными универсальными языками программирования сегодня являются C++, Delphi, Java, Pascal, Visual Basic, Python.

Но, рассматривая языки программирования как самостоятельный объект исследования, можно провести их классификацию по концепции построения языка.

Классификация языков программирования

Языки программирования можно разделить на два класса: процедурные и непроцедурные. Процедурные (императивные ) языки - это языки операторного типа. Описание алгоритма на этом языке имеет вид последовательности операторов. Характерным для процедурного языка является наличие оператора присваивания (Basic, Pascal, С). Программа, написанная на императивном языке, очень похожа на приказы, выражаемые повелительным наклонением в естественных языках, то есть это последовательность команд, которые должен выполнить компьютер. Программируя в императивном стиле, программист должен объяснить компьютеру, как нужно решать задачу.

Непроцедурные (декларативные ) языки - это языки, при использовании которых в программе в явном виде указывается, какими свойствами должен обладать результат, но не говорится, каким способом он должен быть получен. Непроцедурные языки делятся на две группы: функциональные и логические.

Декларативные языки программирования - это языки программирования высокого уровня, в которых операторы представляют собой объявления или высказывания в символьной логике. Типичным примером таких языков являются языки логического программирования (языки, основанные на системе правил и фактов). Характерной особенностью декларативных языков является их декларативная семантика. Основная концепция декларативной семантики заключается в том, что смысл каждого оператора не зависит от того, как этот оператор используется в программе. Декларативная семантика намного проще семантики императивных языков, что может рассматриваться как преимущество декларативных языков над императивными.

Логические языки

В программах на языках логического программирования соответствующие действия выполняются только при наличии необходимого разрешающего условия на вывод новых фактов из данных фактов согласно заданным логическим правилам. Логическое программирование основано на математической логике (см. “Логические операции. Кванторы ”, “Логические выражения ”).

Первым языком логического программирования был язык Planner, он был разработан Карлом Хьюитом в Лаборатории искусственного интеллекта Массачусетсского технологического института в 1969 г. В этом языке была заложена возможность автоматического вывода (получения) результата из данных и заданных правил путем перебора вариантов (совокупность которых называлась планом). Но самым известным языком логического программирования является ПРОЛОГ (Prolog), который был создан во Франции в Марсельском университете в 1971 г. Аленом Кольмеро (Colmerauer).

Ален Кольмеро
(Alain Colmerauer)

Программа на языке ПРОЛОГ содержит две составные части: факты и правила. Факты представляют собой данные, с которыми оперирует программа, а совокупность фактов составляет базу данных ПРОЛОГа, которая, по сути, является реляционной базой данных. Основная операция, выполняемая над данными, - это операция сопоставления, называемая также операцией унификации или согласования. Правила состоят из заголовка и подцелей. Выполнение программы, написанной на ПРОЛОГе, начинается с запроса и состоит в доказательстве истинности некоторого логического утверждения в рамках заданной совокупности фактов и правил. Алгоритм этого доказательства (алгоритм логического вывода) и определяет принципы исполнения программы, написанной на ПРОЛОГе.

В отличие от программ, составленных на языках процедурного типа, предписывающих последовательность шагов, которые должен выполнять компьютер для решения задачи, на ПРОЛОГе программист описывает факты, правила, отношения между ними, а также запросы по проблеме. Например, пусть у нас есть следующие факты относительно того, кто является чьей мамой:

мама("Даша","Маша").

мама("Наташа","Даша").

Кроме этого, имеется правило, вводящее отношение бабушка:

бабушка(X,Y):-

Теперь мы можем делать запросы на предмет того, кто бабушка того или иного человека, или кто является внучкой (внуком) определенной женщины:

бабушка("Наташа",X).

Ответ на этот запрос система ПРОЛОГ выдаст так:

Возможности применения языка ПРОЛОГ весьма обширны. Среди наиболее известных - применение в символической математике, планировании, автоматизированном проектировании, построении компиляторов, базах данных, обработке текстов на естественных языках. Но, наверное, самое характерное применение ПРОЛОГа - это экспертные системы.

На сегодняшний день существует целый класс логических языков; так, от языка Planner также произошли логические языки программирования QA-4, Popler, Conniver и QLISP. Языки программирования Mercury, Visual Prolog, Oz и Fril произошли уже от языка Prolog.

Функциональные языки

Первым языком функционального типа является язык ЛИСП, созданный в Массачусетсском технологическом институте в 1956–1959 гг. Джоном Маккарти, который в 1956 г. на Дармутской конференции (США) впервые предложил термин “искусственный интеллект”.

Джон Маккарти (John McCarthy)

И хотя до сих пор не утихают споры вокруг этого термина и развившегося научного направления в его рамках, исследователи единодушны в использовании функциональных и логических языков для данной области. Значительное число работ по искусственному интеллекту реализовано на ЛИСПе.

После своего появления ЛИСПу присваивали много эпитетов, отражающих его черты: язык функций, символьный язык, язык обработки списков, рекурсивный язык. С позиций сегодняшней классификации ЛИСП определяется как язык программирования функционального типа, в основу которого положен метод -исчисления (метод -исчисления разработан в 30-е годы прошлого столетия А.Черчем в качестве строгой математической модели для вычислимых функций, см. “Теория алгоритмов” ).

Программа, написанная на функциональном языке, состоит из неупорядоченного набора уравнений, определяющих функции и значения, которые задаются как функции от других значений. Программы и данные ЛИСПа существуют в форме символьных выражений, которые хранятся в виде списковых структур. ЛИСП имеет дело с двумя видами объектов: атомами и списками . Атомы - это символы, используемые для идентификации объектов, которые могут быть числовыми и символьными (понятия, материалы, люди и т.д.). Список - это последовательность из нуля или более элементов, заключенных в круглые скобки, каждый из которых является либо атомом, либо списком. Над списками выполняются три примитивные операции: извлечение первого элемента списка; получение оставшейся части списка после удаления первого элемента; объединение первого элемента списка L и оставшейся части списка Q.

Тексты программ на функциональных языках программирования только описывают способ решения задачи, но не предписывают последовательность действий для решения.

В качестве основных свойств функциональных языков программирования обычно рассматриваются следующие: краткость и простота; строгая типизация; модульность; функции - объекты вычисления; чистота (отсутствие побочных эффектов); отложенные (ленивые) вычисления.

Кроме ЛИСПа, к функциональным языкам относят РЕФАЛ (разработан в середине 60-х годов В.Ф. Турчиным в МГУ им. М.В. Ломоносова), Haskell, Clean, ML, OCaml, F#.

Приведем пример описания известного алгоритма быстрой сортировки списка на языке Haskell:

qsort (x:xs) = qsort elts_lt_x ++ [x]

Qsort elts_greq_x where

elts_lt_x =

elts_greq_x =

Здесь записано, что пустой список уже отсортирован. А сортировка непустого списка состоит в том, чтобы разбить список на три: список элементов, меньших головы исходного списка, голова исходного списка ([x]) и список элементов хвоста исходного списка, больше или равных x.

Объектно-ориентированные языки

Объектно-ориентированные языки - это языки, в которых понятия процедуры и данных, используемых в обычных системах программирования, заменены понятием “объект” (см. статью “Объектно-ориентированное программирование ”). Языком объектно-ориентированного программирования в чистом виде считается SmallTalk, возможности объектно-ориентированного программирования заложены также в Java, C++, Delphi.

Дальнейшее развитие современного программирования связано с так называемым “параллельным программированием”. Для реализации этой технологии разрабатываются специализированные объектно-ориентированные языки. К языкам такого типа относят, например, MC# (mcsharp ) - высокоуровневый объектно-ориентированный язык программирования для платформы.NET, поддерживающий создание программ, работающих в распределенной среде с асинхронными вызовами.

Структура языка программирования

Между существующими языками программирования есть принципиальные расхождения в концепции построения языков, особенно это справедливо для более ранних языков, но все эти языки потому и называются языками программирования, что они с точки зрения внутренней системы построения имеют одинаковое формальное строение.

Любой язык программирования состоит из предложений (операторов). Предложения (как и слова) определены над неким алфавитом С. Синтаксис языка описывает множество предложений над алфавитом С, которые внешне представляют правильно сформированные программы.

Синтаксис языка - это правила получения слов и предложений этого языка. Синтаксис схематически описывается с помощью определенных грамматических правил.

Знание формального языка (алфавита + синтаксиса) хотя и достаточно для установления синтаксической корректности программы, однако недостаточно для понимания ее назначения и способа действий. Значение и способ действия программы на языке программирования уточняются путем задания семантики.

Семантика языка - это правила интерпретации слов формального языка, т.е. установления значения отдельных языковых элементов.

Для определения формальных языков, в том числе для языков программирования, используют БНФ (формы Бэкуса - Наура) и синтаксические диаграммы. Это два взаимозаменяемых способа описания.

При описании языка программирования через БНФ используются следующие обозначения:

1) <..>- определяемое слово;

2) R - правило из синтаксиса для формирования слова;

3) ::= - БНФ-правило.

Каждое R состоит из терминальных слов или лексем языка и, возможно, следующих символов:

· [..] - данный элемент присутствует в БНФ;

· {..} - данное вхождение может быть использовано в БНФ;

· {..}* - данное вхождение может быть использовано в БНФ конечное число раз.

Пример 1. Приведем пример БНФ-правила, определяющего целое число.

Читается это правило так: “Целое число - это символ 0 или последовательность символов, которая может начинаться символом “–”, а далее следует отличная от нуля цифра, вслед за которой может следовать любая конечная последовательность цифр”.

Специальную, схожую с БНФ, форму описания формальных языков представляют синтаксические диаграммы. В синтаксических диаграммах используются три типа элементов: овал/круг, прямоугольник, стрелки. В овалах помещаются терминальные слова или лексемы, в прямоугольниках - определяемые слова. Графическое представление языка через синтаксические диаграммы делает описание языка наглядным.

Пример 2 . Описание целого числа с помощью синтаксической диаграммы.

Согласно Примерной программе, необходимо, чтобы школьники представляли современную классификацию языков программирования, а также ориентировались в областях применения каждого из них. Проще всего изложение данной темы проводить после того, как уже произошло подробное знакомство с одним из языков программирования.

Следует рассказать, почему возникают новые языки и совершенствуются старые: в первую очередь это происходит при поиске средства для быстрого написания сложных программ, которые к тому же не содержали ошибок. Известен пример, когда создание языка АДА (назван так в честь первой женщины-программиста Ады Лавлейс, дочери Байрона) было инициировано в 1974 году в Министерстве обороны США. Американские военные осознали, что они теряют много времени, усилий и денег на разработку и сопровождение встроенных компьютерных систем (например, систем наведения ракет), а трудноуловимые ошибки языков программирования приводят к настоящим катастрофам.

Декларативные языки были очень популярны в конце 80-х - начале 90-х годов прошлого столетия, они были названы языками программирования искусственного интеллекта для компьютеров пятого поколения. Однако надежды на их широкое распространение пока не оправдались. Возможно, потому, что существующие системы функционального и логического программирования не позволяют создавать быстро работающие программы для содержательных задач. Не исключено, что их время просто еще не наступило.

Выбирая стратегию преподавания темы “Алгоритмизация и программирование”, необходимо учитывать, что задача общеобразовательного курса - это в большой степени выработка определенного стиля мышления, формирование наиболее общих навыков, умений и представлений, нежели освоение тех или иных конкретных языков и технических средств программирования. В то же время, такой курс должен служить базой для последующего профессионального изучения программирования в высшей школе или старших классах средней школы (в рамках профессионального обучения).

В настоящее время существуют два наиболее распространенных подхода к преподаванию программирования:

1) преподавание на основе специально разработанного языка учебного языка, ориентированного на обучение основным навыкам программирования;

2) изучение одного или нескольких языков программирования, широко используемых на практике при решении научных и хозяйственных задач (такие языки можно назвать стандартными).

Первый подход часто используется при преподавании основ программирования в младших классах средней школы с использованием специальных языков, например, Рапиры, Е-языка, LOGO. Эти языки учитывают возможности школьников младших классов. Такой подход хорош при углубленном изучении информатики в 5–6-х классах.

Относительно второго подхода можно сказать, что большинство современных реализаций стандартных языков загружено большим количеством технических деталей и сложны в изучении. Тем не менее наиболее приемлемым для общеобразовательной школы, где курс информатики преподается в 8–11-х классах, является обучение теоретическим основам программирования на базе стандартного языка. При этом не обязательно вдаваться в глубины языка. Учащиеся, которых он заинтересует, могут сделать это и сами. Наибольшее внимание следует уделить переходу от алгоритмических структур к их программной реализации на языке программирования.

Здесь стоит отметить, что Pascal первоначально создавался как учебный язык, но со временем получил широкое распространение в качестве стандартного языка и развитие в виде объектно-ориентированного языка с визуальной технологией программирования Delphi. За основу курса в 8–9-х классах можно взять Pascal или Basic, а в качестве расширенного (факультативного) курса в 10–11-х классах ознакомить учащихся с их объектно-ориентированными расширениями (Delphi и Visual Basic). У каждого языка есть свои сторонники и противники, и конечный выбор остается за учителем.

Существует два основных подхода к изучению языка программирования: формальный и “программирование по образцу”. Первый основан на формальном (строгом) описании конструкций языка программирования (синтаксиса языка и его семантики ) тем или иным способом (с помощью синтаксических диаграмм, мета-языка или формального словесного описания, в частности, семантики) и использовании при решении задач только изученных, а следовательно понятных, элементов языка. При втором подходе школьникам сначала выдаются готовые программы, рассказывается, что именно они делают, и предлагается написать похожую программу или изменить имеющуюся, не объясняя до конца ряд “технических” или несущественных, с точки зрения учителя, для решения задачи деталей. При этом говорится, что точный смысл соответствующих конструкций вы узнаете позднее, а пока поступайте аналогичным образом. Второй подход дает возможность так называемого “быстрого старта”, но создает опасность получить полуграмотных пользователей среды программирования, т.е. людей, которые используют в своей практике достаточно сложные конструкции, но не могут четко объяснить, почему в том или ином случае нужно применять именно их, и как они работают. В результате рано или поздно такие “программисты” сталкиваются с ошибками, исправить которые они просто не в состоянии - им не хватает знаний.

Одна из задач школьной информатики - научить именно формальному подходу, в частности, при применении различных определений. И формальное изучение языка программирования этому немало способствует. Но и без хороших примеров (образцов) при обучении программированию школьников не обойтись. И чем младше ученики, тем больше примеров необходимо приводить при описании языка (иногда даже заменяя ими строгое определение). Другое дело, что следует добиваться того, чтобы в результате обсуждения примера все его детали оказались понятны школьникам (обязательно нужно объяснить, как и почему это работает, в том числе опираясь на уже изученный формальный материал). В этом случае сильные ученики получат возможность понять все досконально и смогут использовать полученные знания в дальнейшем, а остальные приобретут конкретные навыки и оставят для себя возможность вернуться при необходимости к формальным определениям позже.

Первое, что отличает один язык программирования от другого -- это их синтаксис. Основное назначение синтаксиса -- предоставить систему обозначений для обмена информацией между программистом и транслятором. Однако, при разработке деталей синтаксиса чаще исходят из второстепенных критериев, назначение которых: сделать программу удобной для чтения, написания и трансляции, а также сделать ее однозначной. Если удобство чтения и записи программ необходимы для пользователя языка программирования, то простота трансляции и отсутствие разночтений в языке имеют отношение к нуждам транслятора. Эти цели, в общем случае, противоречивы, и нахождение приемлемого компромисса при их решении является одной из центральных задач при разработке языка программирования.

Разработка нового языка программирования начинается с определения его синтаксиса. Для описания синтаксиса языка программирования, в свою очередь, нужен также некоторый класс. Язык, предназначенный для описания другого языка, называют метаязыком. Язык, используемый для описания синтаксиса языка, называют метасинтаксическим языком. В метасинтаксических языках используется специальная совокупность условных знаков, которая образует нотацию этого языка.

Исторически первым метасинтаксическим языком, который использовался на практике для описания синтаксиса языков программирования (в частности, Алгола-60), являются нормальные формы Бэкуса, сокращенно обозначают БНФ -- бэкусова нормальная форма или бэкусо-науровская форма. Основное назначение форм Бэкуса состоит в представлении в сжатом и компактном виде строго формальных и однозначных правил написания основных конструкций описываемого языка программирования.

Формальное определение синтаксиса языка программирования обычно называется грамматикой.

Формальные языки и грамматики

Первоначально наука о языках -- лингвистика -- сводилась к изучению конкретных естественных языков, их классификации, выяснению сходств и различий между ними. Возникновение и развитие метаматематики, изучающей язык математики, проведение работ по изучению средств коммуникации животных и другие исследования привели в 30-х годах к существенно более широкому представлению о языке, при котором под языком понимается всякое средство, общения, состоящее из:

знаковой системы, т.е. множества допустимых последовательностей знаков;

множества смыслов этой системы;

соответствия между последовательностями знаков и смыслами, делающего «осмысленными» допустимые последовательности знаков.

Знаками могут быть буквы алфавита, математические обозначения, звуки и т.д. Математическая лингвистика рассматривает только такие знаковые системы, в которых знаками являются символы некоторого алфавита, а последовательностями знаков -- тексты, т.е. языки рассматриваются как произвольные последовательности осмысленных текстов. При этом правила, определяющие множество текстов, образуют синтаксис языка, а описание множества смыслов и соответствия между смыслами и текстами -- семантику языка. Семантика языка зависит от характера объектов, описываемых языком, и средства ее изучения различны для различных типов языков. Синтаксис же языка, как оказалось, в меньшей степени зависит от назначения языка и может изучаться методами, не зависящими от содержания и назначения языка. Математический аппарат для изучения синтаксиса языков получил название теория формальных грамматик. С точки зрения синтаксиса, язык здесь понимается уже не как средство общения, а как множество формальных объектов -- последовательностей символов алфавита. Термин «формальный» подчеркивает, что объекты и операции над ними рассматриваются чисто формально, без каких-либо содержательных интерпретаций объектов. Воспроизведем основные термины и определения этой теории.

Буква (или символ) -- это простой неделимый знак; множество букв образует алфавит. Алфавиты являются множествами, и поэтому к ним можно применять теоретико-множественные обозначения. Цепочка -- упорядоченная последовательность букв алфавита. Цепочки будем называть также словами. Множество всех возможных цепочек (слов) над алфавитом А называют замыканием А и обозначают А*.

Множество А* называют итерацией алфавита А.

Если цепочки состоят из повторяющихся букв, то применяются сокращенные обозначения, чтобы показать, что цепочку нужно рассматривать как произведение букв алфавита.

При преобразовании одних цепочек в другие используется понятие подцепочки.

Альтернативным набором терминов для буквы, алфавита или цепочки (слова) является набор: слово, словарь и предложение соответственно. Совокупность цепочек (или предложений) называется языком. Формально язык L над алфавитом А.

Таким образом, используя приведенную выше терминологию, язык программирования для заданного алфавита А является таким подмножеством множества А*, которое включает в себя только те предложения, которые благодаря внешней информации об их семантике считаются осмысленными, т.е. удовлетворяют синтаксису языка программирования.

Приведенное определение формального языка как любого подмножества А* является общим: оно не позволяет выделять среди множества языков отдельные их классы, которые используются на практике.

Систематическое использование математических методов для описания языков программирования начинается с 1960-х годов. Тогда было обнаружено, что формы Бэкуса, которые использовались для описания синтаксиса языка АЛГОЛ-60, имеют строгое формальное обоснование с помощью средств математической лингвистики. С этого времени и началась история развития и применения формального математического аппарата -- теории формальных языков и грамматик -- для проектирования и конструирования трансляторов.

В форме Бэкуса описываются два класса объектов: это, во-первых, основные символы языка программирования и, во-вторых, имена конструкций описываемого языка, или так называемые, металингвистические переменные.

Формальное определение грамматики

Форма Бэкуса-Наура

Грамматика определяется следующим образом:

VT - множество терминальных символов (множество символов алфавита);

VN - множество нетерминальных символов (символов, определяющих понятия языка

P - множество правил;

S - целевой символ грамматики, аксиома.

Рассмотрим формальное описание грамматики по Бэкусу для целых десятичных чисел.

G({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, -}, {<число>, <цифра>}, P, <число>)

P - правило генерации лексем языка:

<число> -> [(+,-)]<цифра>[<цифра>]

<цифра> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9.

Необязательный элемент внутри правила заключается в квадратные скобки [...].

Альтернативные элементы обозначаются вертикальным списком вариантов, заключенным в фигурные скобки {...}.

Необязательные альтернативные варианты обозначаются вертикальным списком вариантов, заключенным в квадратные скобки [...].

Повторяющийся элемент обозначается списком из одного элемента (заключенного, если это необходим, в фигурные или квадратные скобки) со следующим за ним обычным многоточием....

Обязательные ключевые слова подчеркиваются, а необязательные шумовые слова -- нет.

Формы Бэкуса представляют формальное описание языка и они, по существу, натолкнули исследователей на внедрение математических средств для системного описания и исследования языков программирования, использование математического аппарата как основы для синтаксического анализа в трансляторе, что позднее получило развитие в разнообразных методах синтаксического анализа, основанных на формальных синтаксических определениях.

Необходимо отметить, что БНФ не позволяет описывать контекстные зависимости в языке программирования. Например, такое ограничение Паскаль программ, как «идентификатор не может быть описан дважды в одном и том же блоке», нельзя описать средствами БНФ. Ограничения такого рода ближе уже к другой характеристике языка -- семантике. Поэтому здесь используются другие средства, в общем случае называемые метасемантическими языками. Однако, как правило, ядром этих языков является та же БНФ.

Особенностью многих металингвистических формул является наличие в них рекурсий, т.е. использование для описания конструкций самих описываемых конструкций. Рекурсия может быть явной и неявной. Явная рекурсия имеет место, например, в правиле 2 в приведенном выше списке правил описания десятичного числа. Неявная рекурсия присутствует в случае, когда при построении конструкции на некотором шаге используется металингвистическая переменная, обозначающая саму эту конструкцию.

Наличие рекурсий затрудняет чтение и понимание металингвистических формул, однако это едва ли не единственный способ, позволяющий с помощью конечного числа правил, описать язык, который может содержать бесконечное число цепочек основных символов. Языки же программирования бесконечны -- на них можно записать бесконечное число правильных программ, и при описании их синтаксиса с помощью БНФ всегда будут присутствовать явные или неявные рекурсии.

На практике для описания синтаксиса языков программирования применяются и другие металингвистические языки. Одна из целей их использования -- устранить некоторую неестественность представления в БНФ общих синтаксических конструкций для необязательных, альтернативных и повторяющихся элементов правил.

Теория формальных грамматик занимается описанием, распознаванием и переработкой языков. Она позволяет ответить на ряд прикладных вопросов. Например, могут ли языки из некоторого класса Z распознаваться быстро и просто; принадлежит ли данный язык классу Z; существуют ли алгоритмы, которые давали бы ответ на вопросы типа: «Принадлежит или нет к языку L цепочка а?» и т.д.

В общем случае существуют два основных способа описания отдельных классов языков:

с помощью порождающей процедуры;

с помощью распознающей процедуры.

Первая из них задается с помощью конечного множества правил, называемых грамматикой и порождающих в точности те цепочки, которые принадлежат языку L.

Вторая -- с помощью некоторого абстрактного распознающего устройства (автомата).

При построении трансляторов используются оба эти способа: грамматика как средство описания синтаксиса языка программирования, а автомат как модель алгоритма распознавания предложений языка, который и используется в основе построения транслятора. При этом методически (и технологически) сначала конструируется грамматика, а затем уже по ней, как по источнику, строится алгоритм распознавания.

Необходимо отметить, что хотя порождающая грамматика и описывает процесс порождения цепочек языка L(G), но описание это не является алгоритмическим -- в грамматике отсутствует одно из главных свойств алгоритма -- детерминированность, т.е. не фиксируется конкретный порядок применения правил подстановки грамматики. За счет этого обеспечивается компактность описания языка. Зафиксировать такой перечисляющий алгоритм в общем случае можно различными способами, но для точного определения языка этого не требуется.

Таким образом, формальная грамматика G потенциально задает множество алгоритмов порождения языка.

Практическое применение грамматик связано с решением проблемы распознавания. Проблема распознавания разрешима, если существует такой алгоритм, который за конечное число шагов дает ответ на вопрос, принадлежит ли произвольная цепочка над основным словарем грамматики языку, порождаемому этой грамматикой. Если такой алгоритм существует, то язык называется распознаваемым. Если к тому же число шагов алгоритма распознавания зависит от длины цепочки и может быть оценено, язык называется легко распознаваемым. В противном случае не имеет смысла вести речь о построении транслятора для нераспознаваемого языка программирования. Поэтому на практике рассматриваются такие частные классы порождающих грамматик, которые соответствуют распознаваемым, а в большинстве случаев и легко распознаваемым языкам. Наиболее важные классы таких языков могут быть определены в рамках классификации языков, предложенной в 1959 г. американским лингвистом Н.Хомским (классификация по Хомскому). Он предложил классифицировать формальные языки по типу правил порождающих их грамматик:

Класс 0. Грамматики с фразовой структурой. Могут служить моделью естественных языков. Являются самыми сложными, практического применения для построения трансляторов не имеют.

Класс 1. Контекстно-зависимые грамматики. При построении предложений нетерминальный символ может быть заменен на другой с учетом контекста. На основе таких грамматик может осуществляться автоматизированный перевод с одного естественного языка на другой.

Класс 2. Контекстно-свободные грамматики. Замена нетерминала происходит без учета контекста. КС-грамматики играют главную роль при формальном изучении синтаксиса языков программирования и построении блока синтаксического анализа транслятора.

Класс 3. Регулярные грамматики. Языки класса 3 называют языками с конечным числом состояний или автоматными (регулярными) языками, а порождающие их грамматики -- автоматными грамматиками (А-грамматики). А-грамматики используются в основном на этапе лексического анализа.

Основные классы языков могут быть определены классами абстрактных распознающих устройств (автоматов), которые также образуют соответствующую иерархию.

Из четырех классов грамматик контекстно-свободные грамматики наиболее важны в приложении к языкам программирования. С их помощью можно определить большую, хотя и не всю, часть синтаксической структуры языка программирования.

В соответствии с типами грамматик, языки делятся на 4 типа:

<тип 0> - языки с фразовой структурой. К этому типу относятся все естественные языки.

<тип 1> - контекстно-зависимые языки. Языки и грамматики применяются в анализе и переводе текстов на естественных языках. На основе таких грамматик может выполняться автоматизированный перевод с одного естественного языка на другой.

<тип 2> - контекстно-свободные языки. Контекстно-свободные языки лежат в основе синтаксических конструкций современных языков программирования.

<тип 3> - регулярные языки. Являются самыми распространенными и широко используемыми в области проектирования вычислительных систем. Для работы с ними используют регулярные множества, регулярные выражения и конечные автоматы.

Вывод: от классификационного типа языка зависит, с помощью какой грамматики можно построить предложение языка, как распознать предложение.

Для многих языков программирования существуют специальным образом сформулированные утверждения, которые позволяют проверить принадлежность языка к указанному типу. Такие утверждения называются леммами.

Конечные автоматы используют память и обрабатывают последовательность входных символов, принадлежавших конечному множеству. Математически конечный автомат описывается следующим образом:

где V={} - входной алфавит;

Q={} - алфавит состояний;

Функция переходов;

Начальное состояние автомата;

F - конечное состояние автомата;

Конечный автомат условно можно представить следующей схемой (рисунок 2.1).

Рисунок 2.1 - Упрощенная схема конечного автомата

Устройство управления (УУ) может последовательно считывать символы, передвигаясь слева направо. Устройство управления может находиться в различных состояниях: начало работы: ; при завершении F. Переход из состояния в состояние осуществляется в соответствии с функцией переходов. В связи с этим, конечный автомат можно представить следующим образом:

Данная команда означает, что конечный автомат находится в состоянии, читает символ и переходит в состояние.

Таким образом, конечный автомат является распознавателем языка.

Задачей разбора является на основе имеющейся грамматики (язык программирования известен), построить распознаватель для этого языка.

Распознаватели можно классифицировать в зависимости от вида составляющих их компонентов:

Считывающего устройства;

Устройства управления памяти.

По видам считывающего устройства, распознаватели могут быть односторонними и двухсторонними. Односторонние распознаватели допускают перемещение считывающего устройства при чтении входных символов только в одном направлении. Двусторонние распознаватели допускают перемещение в обоих направлениях.

По виду устройств управления, распознаватели бывают:

Детерминированные;

Недетерминированные.

Распознаватель является детерминированным, если на каждом шаге его работы существует единственно-возможная конфигурация, в которую перейдет распознаватель на следующем шаге.

По видам памяти, распознаватели бывают:

1) без памяти;

2) с ограниченной памятью;

3) с неограниченной памятью.

Одним из способов описания алгоритма распознавания языка является задание распознающего устройства.

Для контекстно-свободных устройств, такими устройствами являются автоматы с магазинной памятью.

Магазинная память организована по принципу "первым пришел, последним вышел".

Процесс трансляции исходной программы в объектную обычно разбивается на несколько подпроцессов (фаз). Основными фазами трансляции являются:

1) лексический анализ;

2) синтаксический анализ;

3) семантический анализ;

4) синтез объектной программы.

За последние 70 лет программирование превратилось в обширное направление человеческой деятельности, результаты которой по своей практической значимости вполне сопоставимы с новейшими результатами в области ядерной физики или космических исследований. Эти результаты в значительной мере связаны с появлением и быстрым развитием алгоритмических языков высокого уровня.

Современные языки программирования высокого уровня, такие как Паскаль, Си, Ада, Java, C++, C# и другие, до настоящего времени остаются наиболее распространенным и мощным инструментом у программистов, занимающихся разработкой как системного, так и прикладного программного обеспечения. С появлением новых задач и потребностей функциональные возможности этих языков постоянно расширяются путем создания все более совершенных версий.

Другое направление разработки языков программирования связано с созданием специализированных (проблемно-ориентированных) программных систем и сред для пользователей-непрограммистов (технологов, конструкторов, экономистов и др.). Примерами таких систем и сред являются САПР различного назначения, автоматизированные обучающие системы, системы дистанционного обучения, экспертные и моделирующие системы в экономике и т.д. Назначение соответствующих проблемно-ориентированных языков, используемых в подобных системах, часто отражено в их названиях, например: «Язык описания схем технологического оборудования», «Язык описания сценария обучения», «Язык моделирования ситуаций» и т.п.

Как универсальные, так и проблемно-ориентированные языки программирования обладают одной общей чертой - они являются

формальными языками. Что же такое формальный язык? В самом общем виде на этот вопрос можно ответить так: язык - это множество предложений, а формальный язык - это язык, предложения которого построены по определенным правилам.

Предложения строятся из слов, а слова - из символов (букв). Множество всех допустимых символов называется алфавитом языка. В языках программирования предложениям обычно соответствуют операторы (или инструкции), а символы алфавита мы видим на клавиатуре компьютера.

И естественные языки, и языки программирования - бесконечные множества. На языке программирования можно написать неограниченное число программ.

Как же задать правила построения предложений формального языка? При ответе на этот вопрос мы будем отталкиваться от двух важных понятий: синтаксис и семантика языка.

Синтаксис языка определяет структуру правильных предложений и слов, а в языках программирования, ко всему прочему, и допустимые структуры текстов программ.

Существуют различные способы описания синтаксиса формальных языков (способам описания посвящена вторая глава учебного пособия). Наиболее используемыми в языках программирования являются форма Бэкуса - Наура (БНФ) и синтаксические диаграммы.

БНФ была разработана Бэкусом и впервые применена для строгого описания языка АЛГОЛ-60 в 1963 г. Эта форма используется как для описания структуры языка в целом, так и для описания отдельных языковых конструкций (подмножеств языка) и его элементов - операторов, идентификаторов, выражений, чисел и др.

Ниже приведены примеры БНФ, определяющие синтаксис десятичных целых чисел и синтаксис арифметических выражений, содержащих операции «+» и «*».

БНФ десятичных целых чисел:

= 0|1|...|9

БНФ арифметических выражений:

:= () а

В приведенных выражениях а обозначает любой идентификатор и рассматривается как символ алфавита, из которого строится выражение.

В левой части БНФ в угловых скобках записываются названия определяемых синтаксических категорий (понятий, единиц), символ «:= » означает «есть», «это», «определяется как», символ «|» означает «или».

Правая часть БНФ определяет возможные варианты конструирования конкретных значений этих категорий, в данном случае - значений десятичных чисел и конкретных арифметических выражений. БНФ содержит также и алфавит символов, из которых составляются эти значения. Для десятичных целых чисел алфавит - это множество {+,-, 0, 1,..., 9}, а для выражений - это множество {а, *, +, (,)}.

Процесс конструирования значений синтаксической категории состоит в выводе этих значений путем последовательных подстановок правых частей правил БНФ в левые. Ниже приведены выводы числа « - 320» и выражения «а+а*а» с использованием соответствующих БНФ:

БНФ имеют большое сходство с формальными грамматиками , используемыми в теории формальных языков (некоторые авторы их отождествляют).

Именно появление БНФ стимулировало быстрое развитие теории формальных языков и ее применение к прикладным задачам разработки языков программирования и проектирования трансляторов.

Если в рассмотренных БНФ каждую синтаксическую категорию из левой части правил обозначить через А, В и С соответственно, а вместо символа:= использовать -то будут получены следующие формы:

Для десятичных целых чисел:

А->В+В-В В^>СВС С-> 0 | 11... | 9

Для арифметических выражений:

А^А+ВВ

В->В*СС

С^>(А)а

В таком виде записываются правила формальных грамматик. Символы, обозначающие синтаксические категории, в данном случаев, В, С в формальных грамматиках называются нетерминальными символами, а символы алфавита - терминальными.

На практике после получения грамматики языка программирования в «первом приближении» необходимо исследовать ее свойства, а в ряде случаев и выполнить некоторые преобразования. В основном это связано с необходимостью приведения грамматики к виду, удобному для построения соответствующего транслятора. В процессе выполнения этих преобразований с формальной точки зрения не имеет значения, какие конкретные синтаксические категории и символы алфавита содержит БНФ. Поэтому на этом этапе обычно переходят к формальной грамматике и используют соответствующие методы теории формальных языков. В то же время не следует полностью отождествлять БНФ с формальными грамматиками. Определение грамматики в теории формальных языков имеет более общий характер. В частности, с их помощью можно описывать контекстные зависимости, которых не всегда удается избежать при разработке языков программирования и которые нельзя описать при помощи БНФ.

Характерной чертой грамматик языков программирования является наличие в них рекурсии. Рекурсивность означает, что в определении некоторой синтаксической категории содержится сама определяемая категория (это так называемая явная рекурсия). Например, в рассмотренной БНФ определения для категорий и содержат в правой части сами эти категории. Рекурсия - практически неизбежное свойство грамматик языков программирования, позволяющее сделать их бесконечными. В то же время некоторые виды рекурсии, которые будут рассмотрены позднее, значительно усложняют процесс разработки соответствующих трансляторов.

Остановимся коротко на другом упомянутом выше способе описания синтаксиса языка при помощи синтаксических диаграмм. Некоторые авторы при описании стандарта языка отдают предпочтение этому способу в силу его большей наглядности. Примеры синтаксических диаграмм можно найти во многих книгах по программированию (например, в ). Отметим, что оба способа описания - и БНФ, и синтаксические диаграммы эквивалентны и всегда можно перейти от одного способа описания к другому .

Рассмотрим теперь понятие семантика языка. Если синтаксис языка определяет структуру его правильных предложений и текстов, то семантика определяет корректность их смысла. В свою очередь, корректность смысла зависит от значений слов, составляющих предложения. Например, если в естественном языке определить синтаксис предложения как

то можно построить множество предложений с различными смыслами. Например, предложения «автомобиль едет» и «автомобиль думает» правильны с точки зрения синтаксиса. Однако первое предложение имеет корректный смысл, о втором можно сказать, что оно бессмысленно. Таким образом, семантика определяет множество смыслов и допустимых соответствий между предложениями (текстами) и смыслами.

Кроме того, семантика языка зависит от свойств объектов, описываемых на этом языке. Если в рассмотренном примере автомобиль был бы оснащен компьютером с программами расчета оптимальных режимов и маршрутов движения, то второе предложение уже не казалось бы бессмысленным.

Точно так же в языках программирования синтаксически правильно построенный оператор присваивания

будет семантически некорректным, если а имеет значение 10,5 (а = 10.5), а b - значение ложь (b = false).

Формальное описание семантики языков программирования оказалось значительно более сложной задачей, чем описание синтаксиса. Большинство работ, посвященных применению математических методов в реализации языков программирования, освещают именно вопросы описания синтаксиса и построения методов синтаксического анализа. В этой области сложилась достаточно целостная теория и методология. В то же время семантика языка и семантический анализ до настоящего времени остаются предметами многих исследований.

Многие аспекты семантики языка программирования можно описать в виде перечня семантических соглашений, которые носят общий, неформальный характер. Например, программистам известны такие соглашения, как «каждый идентификатор в блоке описывается один раз», «переменная должна быть определена до ее использования» и т.д.

В качестве примера успешного применения теории формальных языков в области семантики и семантического анализа можно привести аппарат атрибутных трансляционных грамматик, позволяющий учитывать семантические соглашения в описании языка и контролировать их соблюдение в ходе трансляции программы .

Что касается прогнозов на перспективы дальнейшего развития языков программирования, то здесь существует достаточно широкий спектр мнений, вплоть до диаметрально противоположных. Некоторые авторы считают, что каждый из языков имеет свои семантические особенности, которые делают его удобным и привлекательным для той или иной области программирования (например, Пролог и Лисп - ориентированы на решение задач искусственного интеллекта; Фортран - наиболее эффективен при решении вычислительных задач; Кобол - используется для экономических расчетов и т.д.). Поэтому следует создавать все новые языки, обладающие специфическими возможностями или периодически обновлять уже имеющиеся версии, а не пытаться создать универсальный язык. В подтверждение этой точки зрения приводится аргумент, что все амбициозные проекты по созданию универсального языка потерпели неудачу (достаточно вспомнить несбывшиеся надежды, связанные с разработкой языков АДАиПЛ-1).

Другая часть авторов считает, что со времени опубликования стандартов первых языков программирования - Фортран, Алгол и др. - в 60-х гг. XX в., произошла «стабилизация» языков в том смысле, что сходные по назначению языковые конструкции в разных языках имеют практически одну и ту же семантическую основу, несмотря на различия в лексике и синтаксисе. Поэтому, как только удастся формально определить эту общую семантическую базу, можно будет приступить к созданию универсального языка, который уже будет не языком программирования в традиционном понимании, а заготовками семантических конструкций. Программа будет представляться набором этих конструкций, а текстовый редактор уступит место структурному редактору. В качестве примера частичной реализации этого подхода приводятся визуальные среды программирования, подобные Delphi, C++ Builder и др.